Skip to content

Commit 88bbb47

Browse files
committed
finished the first approach to define uniformity from a set of pseudometrics
1 parent e6035f5 commit 88bbb47

File tree

2 files changed

+122
-5
lines changed

2 files changed

+122
-5
lines changed

IsarMathLib/MetricUniform_ZF.thy

+121-5
Original file line numberDiff line numberDiff line change
@@ -34,13 +34,17 @@ theory MetricUniform_ZF imports FinOrd_ZF_1 MetricSpace_ZF
3434

3535
begin
3636

37-
text\<open>In the \<open>MetricSpace_ZF\<close> we show how a single (ordered loop valued) pseudometric
37+
text\<open>Note: this theory is a work in progress. The approach take is probably not the
38+
right one. The right approach is through the notion of least upper bound of a collection
39+
of uniformities.
40+
41+
In the \<open>MetricSpace_ZF\<close> we show how a single (ordered loop valued) pseudometric
3842
defines a uniformity. In this theory we extend this to the situation where we have
3943
an arbitrary collection of pseudometrics, all defined on the the same set $X$ and valued
40-
in an ordered loop $L$. Since real numbers form an ordered loop all the results proven in
44+
in an ordered loop $L$. Since real numbers form an ordered loop all results proven in
4145
this theory are true for the standard real-valued pseudometrics. \<close>
4246

43-
subsection\<open>Definitions and notation\<close>
47+
subsection\<open>From collection of pseudometrics to fundamental system of entourages\<close>
4448

4549
text\<open>Suppose $\mathcal{M}$ is a collection of (an ordered loop valued) pseudometrics on $X$,
4650
i.e. $d:X\times X\rightarrow L^+$ is a pseudometric for every $d\in \mathcal{M}$.
@@ -53,7 +57,7 @@ text\<open>The next two definitions describe the way a common fundamental system
5357
the value $f(d)$ is a positive element of $L$ and
5458
$\{d^{-1}(\{c\in L^+: c\leq f(d)\}): d\in M\}$ is a finite collection of
5559
subsets of $X\times X$. Then we take intersections of such finite
56-
collections as $M$ varies over $\mathcal{M}$ and $f$ varies over all possible function mapping
60+
collections as $M$ varies over $\mathcal{M}$ and $f$ varies over all possible functions mapping
5761
$M$ to $L_+$. To simplify notation for this construction we split it into two steps.
5862
In the first step we define a collection of finite intersections resulting from
5963
choosing a finite set of pseudometrics $M$, $f:M\rightarrow L_+$ and varying
@@ -268,5 +272,117 @@ proof -
268272
with \<open>M\<in>FinPow(\<M>)\<close> \<open>M\<noteq>\<emptyset>\<close> \<open>f\<^sub>2\<in>M\<rightarrow>L\<^sub>+\<close> show ?thesis
269273
using mgauge_finset_fun by auto
270274
qed
271-
275+
276+
text\<open>If $\mathcal{M}$ is a nonempty collection of pseudometrics on a nonempty set $X$
277+
valued in loop $L$ partially ordered by relation $r$ such that the set of positive elements
278+
$L_+$ is nonempty, $r$ down directs $L_+$ and $r$ is halfable on $L$,then
279+
$\mathfrak{B}$ is a fundamental system of entourages in $X$ hence its supersets
280+
form a uniformity on $X$ and hence those supersets define a topology on $X$ \<close>
281+
282+
lemma (in muliple_pmetric) mmetric_gauge_base:
283+
assumes "X\<noteq>\<emptyset>" "\<M>\<noteq>\<emptyset>" "L\<^sub>+\<noteq>\<emptyset>" "r {down-directs} L\<^sub>+" "IsHalfable(L,A,r)"
284+
shows
285+
"\<BB> {is a uniform base on} X"
286+
"Supersets(X\<times>X,\<BB>) {is a uniformity on} X"
287+
"UniformTopology(Supersets(X\<times>X,\<BB>),X) {is a topology}"
288+
"\<Union>UniformTopology(Supersets(X\<times>X,\<BB>),X) = X"
289+
using assms mgauge_1st_cond mgauge_2nd_and_3rd_cond mgauge_4thCond
290+
mgauge_5thCond mgauge_6thCond uniformity_base_is_base uniform_top_is_top
291+
unfolding IsUniformityBaseOn_def by simp_all
292+
293+
subsection\<open>An alternative approach\<close>
294+
295+
text\<open>The formula for defining the fundamental system of entourages from a collection
296+
of pseudometrics given in lemma \<open>mgauge_def_alt\<close> is a bit different than the standard one
297+
found in the literature on real-valued pseudometrics. In this section we explore another
298+
alternative to defining fundamental system of entourages common to a collection of pseudometrics.\<close>
299+
300+
text\<open>Any pseudometrics $d:X\times X\rightarrow L^+$ defines a fundamental system of entourages
301+
on $X$ by the formula $\mathcal{B}(d) = \{ d^{-1}(\{c\in L^+: c\leq b\}): b \in L_+ \}$
302+
(see theorem \<open>metric_gauge_base\<close> in \<open>Metric_Space_ZF\<close> theory. \<close>
303+
304+
definition (in muliple_pmetric) gauge ("\<B>") where
305+
"\<B>(d) \<equiv> {d-``({c\<in>L\<^sup>+. c\<lsq>b}). b\<in>L\<^sub>+}"
306+
307+
text\<open>Every subset $M$ of $\mathcal{M}$ defines a collection of fundamental systems
308+
of entourages $\mathfrak{M}(M) = \{\mathcal{B}(d): d\in M\}$. \<close>
309+
310+
definition (in muliple_pmetric) gauge_set ("\<MM>") where
311+
"\<MM>(M) = {\<B>(d). d\<in>M}"
312+
313+
text\<open> To get a fundamental system of entourages common to all pseudometrics
314+
$d\in \mathcal{M}$ we take intersections of sets selected from finite nonempty
315+
subcollections of the collection of all fundamental systems of entourages defined by pseudometrics
316+
$d\in \mathcal{M}$. To distinguish it from the common fundamental system of entourages
317+
defined in the previous section we denote that $\mathfrak{B}_1$. \<close>
318+
319+
definition (in muliple_pmetric) mgauge_alt ("\<BB>\<^sub>1") where
320+
"\<BB>\<^sub>1 \<equiv> \<Union>M\<in>FinPow(\<M>)\<setminus>{\<emptyset>}. {(\<Inter>B\<in>\<MM>(M). g`(B)). g\<in>ChoiceFunctions(\<MM>(M))}"
321+
322+
text\<open>If $M$ is a nonempty finite subset of $mathcal{M}$ then we have
323+
inclusion $\{\bigcap_{B\in \mathfrak{M}(M)} g(B) : g \in \mathcal(C)(\mathfrak{M}(M)\} \subseteq
324+
\{\bigcap_{d\in M} d^{-1}(\{c\in L^+: c\leq f(d)\}:\ f:M\rightarrow L_+\})$.
325+
where $\mathcal{C}(\mathcal{A})$ is the set of choice functions for a collection $\mathcal{A}$
326+
(see theory \<open>Cardinal_ZF\<close> for definition of choice function for a collection. \<close>
327+
328+
lemma (in muliple_pmetric) mgauge_alt_mgauge1:
329+
assumes "M\<in>FinPow(\<M>)" "M\<noteq>\<emptyset>"
330+
defines "\<C> \<equiv> ChoiceFunctions(\<MM>(M))"
331+
shows "{(\<Inter>B\<in>\<MM>(M). g`(B)). g\<in>\<C>} \<subseteq> {(\<Inter>d\<in>M. d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)})). f\<in>M\<rightarrow>L\<^sub>+}"
332+
proof -
333+
let ?L = "{(\<Inter>B\<in>\<MM>(M). g`(B)). g\<in>\<C>}"
334+
let ?R = "{(\<Inter>d\<in>M. d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)})). f\<in>M\<rightarrow>L\<^sub>+}"
335+
from assms(1,2) have "Finite(\<MM>(M))" and "\<MM>(M)\<noteq>\<emptyset>"
336+
unfolding gauge_set_def FinPow_def using fin_rep_fin by simp_all
337+
{ fix U assume "U \<in> ?L"
338+
then obtain g where "g\<in>\<C>" and "U=(\<Inter>B\<in>\<MM>(M). g`(B))" by auto
339+
from assms(3) \<open>g\<in>\<C>\<close> have "g:(\<MM>(M))\<rightarrow>(\<Union>\<MM>(M))" and I: "\<forall>B\<in>\<MM>(M). g`(B) \<in> B"
340+
unfolding ChoiceFunctions_def by auto
341+
{ fix d assume "d\<in>M"
342+
then have "\<B>(d) \<in> \<MM>(M)" and II: "\<B>(d) = {d-``({c\<in>L\<^sup>+. c\<lsq>b}). b\<in>L\<^sub>+}"
343+
unfolding gauge_set_def gauge_def by auto
344+
from I \<open>\<B>(d) \<in> \<MM>(M)\<close> have "g`(\<B>(d)) \<in> \<B>(d)" by simp
345+
with II obtain b where
346+
"b\<in>L\<^sub>+" and "g`(\<B>(d)) = d-``({c\<in>L\<^sup>+. c\<lsq>b})"
347+
by auto
348+
hence "\<exists>b\<in>L\<^sub>+. g`(\<B>(d)) = d-``({c\<in>L\<^sup>+. c\<lsq>b})" by auto
349+
} hence "\<forall>d\<in>M. \<exists>b\<in>L\<^sub>+. g`(\<B>(d)) = d-``({c\<in>L\<^sup>+. c\<lsq>b})"
350+
by auto
351+
with assms(1) have
352+
"\<exists>f\<in>M\<rightarrow>L\<^sub>+. \<forall>d\<in>M. g`(\<B>(d)) = d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)})"
353+
unfolding FinPow_def using finite_choice_fun by auto
354+
then obtain f where
355+
"f:M\<rightarrow>L\<^sub>+" and II: "\<forall>d\<in>M. g`(\<B>(d)) = d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)})"
356+
by auto
357+
have "U = (\<Inter>d\<in>M. d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)}))"
358+
proof
359+
{ fix p assume "p\<in>U"
360+
with \<open>U=(\<Inter>B\<in>\<MM>(M). g`(B))\<close> have "\<forall>B\<in>\<MM>(M). p\<in>g`(B)" by auto
361+
{ fix d assume "d\<in>M"
362+
then have "\<B>(d) \<in> \<MM>(M)" unfolding gauge_set_def by auto
363+
with \<open>\<forall>B\<in>\<MM>(M). p\<in>g`(B)\<close> have "p\<in>g`(\<B>(d))" by simp
364+
with II \<open>d\<in>M\<close> have "p \<in> d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)})"
365+
by simp
366+
} hence "\<forall>d\<in>M. p \<in> d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)})" by simp
367+
with assms(2) have "p\<in>(\<Inter>d\<in>M. d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)}))"
368+
by auto
369+
} thus "U \<subseteq> (\<Inter>d\<in>M. d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)}))" by auto
370+
{ fix p assume "p \<in> (\<Inter>d\<in>M. d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)}))"
371+
hence III: "\<forall>d\<in>M. p \<in> d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)})" by auto
372+
{ fix B assume "B\<in>\<MM>(M)"
373+
then have "B \<in> {\<B>(d). d\<in>M}" unfolding gauge_set_def
374+
by simp
375+
then obtain d where "d\<in>M" and "B=\<B>(d)"
376+
unfolding gauge_def by auto
377+
from \<open>d\<in>M\<close> II have "g`(\<B>(d)) = d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)})"
378+
by simp
379+
with III \<open>d\<in>M\<close> have "p \<in> g`(\<B>(d))" by simp
380+
with \<open>B=\<B>(d)\<close> have "p\<in>g`(B)" by simp
381+
} hence "\<forall>B\<in>\<MM>(M). p\<in>g`(B)" by simp
382+
with \<open>\<MM>(M)\<noteq>\<emptyset>\<close> \<open>U=(\<Inter>B\<in>\<MM>(M). g`(B))\<close> have "p\<in>U" by auto
383+
} thus "(\<Inter>d\<in>M. d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)})) \<subseteq> U" by auto
384+
qed
385+
with \<open>f:M\<rightarrow>L\<^sub>+\<close> have "U\<in>?R" by auto
386+
} thus "?L\<subseteq>?R" by auto
387+
qed
272388
end

isar2html2.0/src/isar2html/IsarSym2Latex.fs

+1
Original file line numberDiff line numberDiff line change
@@ -139,6 +139,7 @@ namespace iml
139139
("\\<D>", "\\mathcal{D} ")
140140
("\\<H>", "\\mathcal{H} ")
141141
("\\<M>", "\\mathcal{M} ")
142+
("\\<MM>", "\\mathfrak{M} ")
142143
("\\<N>", "\\mathcal{N}")
143144
("\\<P>", "\\mathcal{P}")
144145
("\\<S>", "\\mathcal{S} ")

0 commit comments

Comments
 (0)