@@ -34,13 +34,17 @@ theory MetricUniform_ZF imports FinOrd_ZF_1 MetricSpace_ZF
34
34
35
35
begin
36
36
37
- text \<open>In the \<open>MetricSpace_ZF\<close> we show how a single ( ordered loop valued ) pseudometric
37
+ text \<open>Note: this theory is a work in progress. The approach take is probably not the
38
+ right one. The right approach is through the notion of least upper bound of a collection
39
+ of uniformities.
40
+
41
+ In the \<open>MetricSpace_ZF\<close> we show how a single ( ordered loop valued ) pseudometric
38
42
defines a uniformity. In this theory we extend this to the situation where we have
39
43
an arbitrary collection of pseudometrics , all defined on the the same set $X $ and valued
40
- in an ordered loop $L $. Since real numbers form an ordered loop all the results proven in
44
+ in an ordered loop $L $. Since real numbers form an ordered loop all results proven in
41
45
this theory are true for the standard real - valued pseudometrics. \<close>
42
46
43
- subsection \<open>Definitions and notation \<close>
47
+ subsection \<open>From collection of pseudometrics to fundamental system of entourages \<close>
44
48
45
49
text \<open>Suppose $\mathcal{M}$ is a collection of (an ordered loop valued) pseudometrics on $X$,
46
50
i.e. $d:X\times X\rightarrow L^+$ is a pseudometric for every $d\in \mathcal{M}$.
@@ -53,7 +57,7 @@ text\<open>The next two definitions describe the way a common fundamental system
53
57
the value $f(d)$ is a positive element of $L$ and
54
58
$\{d^{-1}(\{c\in L^+: c\leq f(d)\}): d\in M\}$ is a finite collection of
55
59
subsets of $X\times X$. Then we take intersections of such finite
56
- collections as $M$ varies over $\mathcal{M}$ and $f$ varies over all possible function mapping
60
+ collections as $M$ varies over $\mathcal{M}$ and $f$ varies over all possible functions mapping
57
61
$M$ to $L_+$. To simplify notation for this construction we split it into two steps.
58
62
In the first step we define a collection of finite intersections resulting from
59
63
choosing a finite set of pseudometrics $M$, $f:M\rightarrow L_+$ and varying
@@ -268,5 +272,117 @@ proof -
268
272
with \<open>M\<in>FinPow(\<M>)\<close> \<open>M\<noteq>\<emptyset>\<close> \<open>f\<^sub>2\<in>M\<rightarrow>L\<^sub>+\<close> show ?thesis
269
273
using mgauge_finset_fun by auto
270
274
qed
271
-
275
+
276
+ text \<open>If $\mathcal{M}$ is a nonempty collection of pseudometrics on a nonempty set $X$
277
+ valued in loop $L$ partially ordered by relation $r$ such that the set of positive elements
278
+ $L_+$ is nonempty, $r$ down directs $L_+$ and $r$ is halfable on $L$,then
279
+ $\mathfrak{B}$ is a fundamental system of entourages in $X$ hence its supersets
280
+ form a uniformity on $X$ and hence those supersets define a topology on $X$ \<close>
281
+
282
+ lemma ( in muliple_pmetric ) mmetric_gauge_base :
283
+ assumes "X\<noteq>\<emptyset>" "\<M>\<noteq>\<emptyset>" "L\<^sub>+\<noteq>\<emptyset>" "r {down-directs} L\<^sub>+" "IsHalfable(L,A,r)"
284
+ shows
285
+ "\<BB> {is a uniform base on} X"
286
+ "Supersets(X\<times>X,\<BB>) {is a uniformity on} X"
287
+ "UniformTopology(Supersets(X\<times>X,\<BB>),X) {is a topology}"
288
+ "\<Union>UniformTopology(Supersets(X\<times>X,\<BB>),X) = X"
289
+ using assms mgauge_1st_cond mgauge_2nd_and_3rd_cond mgauge_4thCond
290
+ mgauge_5thCond mgauge_6thCond uniformity_base_is_base uniform_top_is_top
291
+ unfolding IsUniformityBaseOn_def by simp_all
292
+
293
+ subsection \<open>An alternative approach\<close>
294
+
295
+ text \<open>The formula for defining the fundamental system of entourages from a collection
296
+ of pseudometrics given in lemma \<open>mgauge_def_alt\<close> is a bit different than the standard one
297
+ found in the literature on real - valued pseudometrics. In this section we explore another
298
+ alternative to defining fundamental system of entourages common to a collection of pseudometrics.\<close>
299
+
300
+ text \<open>Any pseudometrics $d:X\times X\rightarrow L^+$ defines a fundamental system of entourages
301
+ on $X$ by the formula $\mathcal{B}(d) = \{ d^{-1}(\{c\in L^+: c\leq b\}): b \in L_+ \}$
302
+ (see theorem \<open>metric_gauge_base\<close> in \<open>Metric_Space_ZF\<close> theory. \<close>
303
+
304
+ definition ( in muliple_pmetric ) gauge ( "\<B>" ) where
305
+ "\<B>(d) \<equiv> {d-``({c\<in>L\<^sup>+. c\<lsq>b}). b\<in>L\<^sub>+}"
306
+
307
+ text \<open>Every subset $M$ of $\mathcal{M}$ defines a collection of fundamental systems
308
+ of entourages $\mathfrak{M}(M) = \{\mathcal{B}(d): d\in M\}$. \<close>
309
+
310
+ definition ( in muliple_pmetric ) gauge_set ( "\<MM>" ) where
311
+ "\<MM>(M) = {\<B>(d). d\<in>M}"
312
+
313
+ text \<open> To get a fundamental system of entourages common to all pseudometrics
314
+ $d\in \mathcal{M}$ we take intersections of sets selected from finite nonempty
315
+ subcollections of the collection of all fundamental systems of entourages defined by pseudometrics
316
+ $d\in \mathcal{M}$. To distinguish it from the common fundamental system of entourages
317
+ defined in the previous section we denote that $\mathfrak{B}_1$. \<close>
318
+
319
+ definition ( in muliple_pmetric ) mgauge_alt ( "\<BB>\<^sub>1" ) where
320
+ "\<BB>\<^sub>1 \<equiv> \<Union>M\<in>FinPow(\<M>)\<setminus>{\<emptyset>}. {(\<Inter>B\<in>\<MM>(M). g`(B)). g\<in>ChoiceFunctions(\<MM>(M))}"
321
+
322
+ text \<open>If $M$ is a nonempty finite subset of $mathcal{M}$ then we have
323
+ inclusion $\{\bigcap_{B\in \mathfrak{M}(M)} g(B) : g \in \mathcal(C)(\mathfrak{M}(M)\} \subseteq
324
+ \{\bigcap_{d\in M} d^{-1}(\{c\in L^+: c\leq f(d)\}:\ f:M\rightarrow L_+\})$.
325
+ where $\mathcal{C}(\mathcal{A})$ is the set of choice functions for a collection $\mathcal{A}$
326
+ (see theory \<open>Cardinal_ZF\<close> for definition of choice function for a collection. \<close>
327
+
328
+ lemma ( in muliple_pmetric ) mgauge_alt_mgauge1 :
329
+ assumes "M\<in>FinPow(\<M>)" "M\<noteq>\<emptyset>"
330
+ defines "\<C> \<equiv> ChoiceFunctions(\<MM>(M))"
331
+ shows "{(\<Inter>B\<in>\<MM>(M). g`(B)). g\<in>\<C>} \<subseteq> {(\<Inter>d\<in>M. d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)})). f\<in>M\<rightarrow>L\<^sub>+}"
332
+ proof -
333
+ let ?L = "{(\<Inter>B\<in>\<MM>(M). g`(B)). g\<in>\<C>}"
334
+ let ?R = "{(\<Inter>d\<in>M. d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)})). f\<in>M\<rightarrow>L\<^sub>+}"
335
+ from assms ( 1 , 2 ) have "Finite(\<MM>(M))" and "\<MM>(M)\<noteq>\<emptyset>"
336
+ unfolding gauge_set_def FinPow_def using fin_rep_fin by simp_all
337
+ { fix U assume "U \<in> ?L"
338
+ then obtain g where "g\<in>\<C>" and "U=(\<Inter>B\<in>\<MM>(M). g`(B))" by auto
339
+ from assms ( 3 ) \<open>g\<in>\<C>\<close> have "g:(\<MM>(M))\<rightarrow>(\<Union>\<MM>(M))" and I : "\<forall>B\<in>\<MM>(M). g`(B) \<in> B"
340
+ unfolding ChoiceFunctions_def by auto
341
+ { fix d assume "d\<in>M"
342
+ then have "\<B>(d) \<in> \<MM>(M)" and II : "\<B>(d) = {d-``({c\<in>L\<^sup>+. c\<lsq>b}). b\<in>L\<^sub>+}"
343
+ unfolding gauge_set_def gauge_def by auto
344
+ from I \<open>\<B>(d) \<in> \<MM>(M)\<close> have "g`(\<B>(d)) \<in> \<B>(d)" by simp
345
+ with II obtain b where
346
+ "b\<in>L\<^sub>+" and "g`(\<B>(d)) = d-``({c\<in>L\<^sup>+. c\<lsq>b})"
347
+ by auto
348
+ hence "\<exists>b\<in>L\<^sub>+. g`(\<B>(d)) = d-``({c\<in>L\<^sup>+. c\<lsq>b})" by auto
349
+ } hence "\<forall>d\<in>M. \<exists>b\<in>L\<^sub>+. g`(\<B>(d)) = d-``({c\<in>L\<^sup>+. c\<lsq>b})"
350
+ by auto
351
+ with assms ( 1 ) have
352
+ "\<exists>f\<in>M\<rightarrow>L\<^sub>+. \<forall>d\<in>M. g`(\<B>(d)) = d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)})"
353
+ unfolding FinPow_def using finite_choice_fun by auto
354
+ then obtain f where
355
+ "f:M\<rightarrow>L\<^sub>+" and II : "\<forall>d\<in>M. g`(\<B>(d)) = d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)})"
356
+ by auto
357
+ have "U = (\<Inter>d\<in>M. d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)}))"
358
+ proof
359
+ { fix p assume "p\<in>U"
360
+ with \<open>U=(\<Inter>B\<in>\<MM>(M). g`(B))\<close> have "\<forall>B\<in>\<MM>(M). p\<in>g`(B)" by auto
361
+ { fix d assume "d\<in>M"
362
+ then have "\<B>(d) \<in> \<MM>(M)" unfolding gauge_set_def by auto
363
+ with \<open>\<forall>B\<in>\<MM>(M). p\<in>g`(B)\<close> have "p\<in>g`(\<B>(d))" by simp
364
+ with II \<open>d\<in>M\<close> have "p \<in> d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)})"
365
+ by simp
366
+ } hence "\<forall>d\<in>M. p \<in> d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)})" by simp
367
+ with assms ( 2 ) have "p\<in>(\<Inter>d\<in>M. d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)}))"
368
+ by auto
369
+ } thus "U \<subseteq> (\<Inter>d\<in>M. d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)}))" by auto
370
+ { fix p assume "p \<in> (\<Inter>d\<in>M. d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)}))"
371
+ hence III : "\<forall>d\<in>M. p \<in> d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)})" by auto
372
+ { fix B assume "B\<in>\<MM>(M)"
373
+ then have "B \<in> {\<B>(d). d\<in>M}" unfolding gauge_set_def
374
+ by simp
375
+ then obtain d where "d\<in>M" and "B=\<B>(d)"
376
+ unfolding gauge_def by auto
377
+ from \<open>d\<in>M\<close> II have "g`(\<B>(d)) = d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)})"
378
+ by simp
379
+ with III \<open>d\<in>M\<close> have "p \<in> g`(\<B>(d))" by simp
380
+ with \<open>B=\<B>(d)\<close> have "p\<in>g`(B)" by simp
381
+ } hence "\<forall>B\<in>\<MM>(M). p\<in>g`(B)" by simp
382
+ with \<open>\<MM>(M)\<noteq>\<emptyset>\<close> \<open>U=(\<Inter>B\<in>\<MM>(M). g`(B))\<close> have "p\<in>U" by auto
383
+ } thus "(\<Inter>d\<in>M. d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)})) \<subseteq> U" by auto
384
+ qed
385
+ with \<open>f:M\<rightarrow>L\<^sub>+\<close> have "U\<in>?R" by auto
386
+ } thus "?L\<subseteq>?R" by auto
387
+ qed
272
388
end
0 commit comments