Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added .DS_Store
Binary file not shown.
Binary file added histomicstk/.DS_Store
Binary file not shown.
Binary file modified histomicstk/cli/.DS_Store
Binary file not shown.
Binary file added histomicstk/segmentationschool/.DS_Store
Binary file not shown.
74 changes: 45 additions & 29 deletions histomicstk/segmentationschool/Codes/InitializeFolderStructure.py
100644 → 100755
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
import os,girder_client
import os
import numpy as np
from glob import glob
from shutil import rmtree,copy#,move,copyfile
from shutil import rmtree,move,copyfile,copy

def purge_training_set(args):
rmtree(args.base_dir + '/' + args.project + '/Permanent/')
Expand Down Expand Up @@ -41,39 +41,24 @@ def initFolder(args):
dirs = {'imExt': '.jpeg'}
dirs['basedir'] = args.base_dir
dirs['maskExt'] = '.png'
dirs['modeldir'] = 'MODELS'
dirs['tempdirLR'] = 'TempLR'
dirs['tempdirHR'] = 'TempHR'
dirs['pretraindir'] = 'Deeplab_network'
dirs['training_data_dir'] = 'TRAINING_data'
dirs['validation_data_dir'] = 'HOLDOUT_data'
dirs['modeldir'] = '/MODELS/'
dirs['tempdirLR'] = '/TempLR/'
dirs['tempdirHR'] = '/TempHR/'
dirs['pretraindir'] = '/Deeplab_network/'
dirs['training_data_dir'] = '/TRAINING_data/'
dirs['validation_data_dir'] = '/HOLDOUT_data/'
dirs['model_init'] = 'deeplab_resnet.ckpt'
dirs['project']= '/' + args.project
dirs['data_dir_HR'] = args.base_dir + args.project + 'Permanent/HR'
dirs['data_dir_LR'] = args.base_dir + args.project + 'Permanent/LR'
dirs['data_dir_HR'] = args.base_dir + args.project + '/Permanent/HR/'
dirs['data_dir_LR'] = args.base_dir + args.project + '/Permanent/LR/'
initializeFolderStructure(dirs,args)
print('Please add xmls/svs files to the newest TRAINING_data folder.')


def initializeFolderStructure(dirs,args):
make_folder(dirs['basedir'] +dirs['project'] + dirs['modeldir'] + str(0) + '/LR/')
make_folder(dirs['basedir'] +dirs['project']+ dirs['modeldir'] + str(0) + '/HR/')

folder_base = args.base_dir
base_directory_id = folder_base.split('/')[-2]
_ = os.system("printf '\nIn the base directory: {} {}\n'".format(base_directory_id,folder_base))

folder_project = args.project
project_directory_id = folder_project.split('/')[-2]
_ = os.system("printf '\nIn the base directory: {}{}\n'".format(project_directory_id,folder_base))

gc = girder_client.GirderClient(apiUrl=args.girderApiUrl)
gc.setToken(args.girderToken)

# modeldir = gc.createFolder(project_directory_id, dirs['modeldir'])


# make_folder(dirs['basedir'] +dirs['project'] + dirs['modeldir'] + str(0) + '/LR/')
# make_folder(dirs['basedir'] +dirs['project']+ dirs['modeldir'] + str(0) + '/HR/')

if args.transfer==' ':
pass
else:
Expand Down Expand Up @@ -103,6 +88,37 @@ def initializeFolderStructure(dirs,args):
for file in pretrain_filesHR:
copy(file,dirs['basedir'] +dirs['project']+ dirs['modeldir'] + str(0) + '/HR/')

training_data_dir = gc.createFolder(project_directory_id, dirs['training_data_dir'])

print(training_data_dir, 'this is training data dir')
make_folder(dirs['basedir']+dirs['project'] + dirs['training_data_dir'] + str(0))

make_folder(dirs['basedir'] +dirs['project']+ dirs['tempdirLR'] + '/regions')
make_folder(dirs['basedir'] +dirs['project']+ dirs['tempdirLR'] + '/masks')

make_folder(dirs['basedir'] +dirs['project']+ dirs['tempdirLR'] + '/Augment' +'/regions')
make_folder(dirs['basedir'] +dirs['project']+ dirs['tempdirLR'] + '/Augment' +'/masks')

make_folder(dirs['basedir']+dirs['project'] + dirs['tempdirHR'] + '/regions')
make_folder(dirs['basedir'] +dirs['project']+ dirs['tempdirHR'] + '/masks')

make_folder(dirs['basedir']+dirs['project'] + dirs['tempdirHR'] + '/Augment' +'/regions')
make_folder(dirs['basedir']+dirs['project']+ dirs['tempdirHR'] + '/Augment' +'/masks')

make_folder(dirs['basedir'] +dirs['project']+ dirs['modeldir'])
make_folder(dirs['basedir'] +dirs['project']+ dirs['training_data_dir'])
make_folder(dirs['basedir'] +dirs['project']+ dirs['validation_data_dir'])


make_folder(dirs['basedir'] +dirs['project']+ '/Permanent' +'/LR/'+ 'regions/')
make_folder(dirs['basedir'] +dirs['project']+ '/Permanent' +'/LR/'+ 'masks/')
make_folder(dirs['basedir'] +dirs['project']+ '/Permanent' +'/HR/'+ 'regions/')
make_folder(dirs['basedir'] +dirs['project']+ '/Permanent' +'/HR/'+ 'masks/')

make_folder(dirs['basedir'] +dirs['project']+ dirs['training_data_dir'])

make_folder(dirs['basedir'] + '/Codes/Deeplab_network/datasetLR')
make_folder(dirs['basedir'] + '/Codes/Deeplab_network/datasetHR')


def make_folder(directory):
if not os.path.exists(directory):
os.makedirs(directory) # make directory if it does not exit already # make new directory # Check if folder exists, if not make it
16 changes: 8 additions & 8 deletions histomicstk/segmentationschool/Codes/IterativePredict.py
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -2,28 +2,28 @@
import numpy as np
import os
import sys
# import argparse
import argparse
import multiprocessing
import lxml.etree as ET
import warnings
import time

sys.path.append('..')
sys.path.append(os.getcwd()+'/Codes')

from glob import glob
from subprocess import call
from joblib import Parallel, delayed
from skimage.io import imread, imsave
from skimage.transform import resize
from scipy.ndimage.measurements import label
# from skimage.segmentation import clear_border
from skimage.segmentation import clear_border
from skimage.morphology import remove_small_objects
# from skimage import color
from skimage import color
from shutil import rmtree
from .IterativeTraining import get_num_classes
from .get_choppable_regions import get_choppable_regions
from .get_network_performance import get_perf
# from matplotlib import pyplot as plt
from IterativeTraining import get_num_classes
from get_choppable_regions import get_choppable_regions
from get_network_performance import get_perf
from matplotlib import pyplot as plt
"""
Pipeline code to find gloms from WSI

Expand Down
Loading