forked from PlayVoice/whisper-vits-svc
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
我去除了大部分的训练用函数,但是我保留了一部分,因为只有保留了这一部分才知道你用的是Pytorch
- Loading branch information
1 parent
8e02df2
commit 9574caf
Showing
2 changed files
with
401 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,328 @@ | ||
import copy | ||
import math | ||
import torch | ||
from torch import nn | ||
from torch.nn import functional as F | ||
|
||
import attentions | ||
import commons | ||
import modules | ||
|
||
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d | ||
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm | ||
from commons import init_weights, get_padding | ||
from vdecoder.hifigan.models import Generator | ||
from utils import f0_to_coarse | ||
|
||
class ResidualCouplingBlock(nn.Module): | ||
def __init__(self, | ||
channels, | ||
hidden_channels, | ||
kernel_size, | ||
dilation_rate, | ||
n_layers, | ||
n_flows=4, | ||
gin_channels=0): | ||
super().__init__() | ||
self.channels = channels | ||
self.hidden_channels = hidden_channels | ||
self.kernel_size = kernel_size | ||
self.dilation_rate = dilation_rate | ||
self.n_layers = n_layers | ||
self.n_flows = n_flows | ||
self.gin_channels = gin_channels | ||
|
||
self.flows = nn.ModuleList() | ||
for i in range(n_flows): | ||
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True)) | ||
self.flows.append(modules.Flip()) | ||
|
||
def forward(self, x, x_mask, g=None, reverse=False): | ||
if not reverse: | ||
for flow in self.flows: | ||
x, _ = flow(x, x_mask, g=g, reverse=reverse) | ||
else: | ||
for flow in reversed(self.flows): | ||
x = flow(x, x_mask, g=g, reverse=reverse) | ||
return x | ||
|
||
|
||
class Encoder(nn.Module): | ||
def __init__(self, | ||
in_channels, | ||
out_channels, | ||
hidden_channels, | ||
kernel_size, | ||
dilation_rate, | ||
n_layers, | ||
gin_channels=0): | ||
super().__init__() | ||
self.in_channels = in_channels | ||
self.out_channels = out_channels | ||
self.hidden_channels = hidden_channels | ||
self.kernel_size = kernel_size | ||
self.dilation_rate = dilation_rate | ||
self.n_layers = n_layers | ||
self.gin_channels = gin_channels | ||
|
||
self.pre = nn.Conv1d(in_channels, hidden_channels, 1) | ||
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels) | ||
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) | ||
|
||
def forward(self, x, x_lengths, g=None): | ||
# print(x.shape,x_lengths.shape) | ||
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) | ||
x = self.pre(x) * x_mask | ||
x = self.enc(x, x_mask, g=g) | ||
stats = self.proj(x) * x_mask | ||
m, logs = torch.split(stats, self.out_channels, dim=1) | ||
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask | ||
return z, m, logs, x_mask | ||
|
||
|
||
class TextEncoder(nn.Module): | ||
def __init__(self, | ||
in_channels, | ||
out_channels, | ||
hidden_channels, | ||
kernel_size, | ||
dilation_rate, | ||
n_layers, | ||
gin_channels=0, | ||
filter_channels=None, | ||
n_heads=None, | ||
p_dropout=None): | ||
super().__init__() | ||
self.in_channels = in_channels | ||
self.out_channels = out_channels | ||
self.hidden_channels = hidden_channels | ||
self.kernel_size = kernel_size | ||
self.dilation_rate = dilation_rate | ||
self.n_layers = n_layers | ||
self.gin_channels = gin_channels | ||
self.pre = nn.Conv1d(in_channels, hidden_channels, 1) | ||
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) | ||
self.f0_emb = nn.Embedding(256, hidden_channels) | ||
|
||
self.enc_ = attentions.Encoder( | ||
hidden_channels, | ||
filter_channels, | ||
n_heads, | ||
n_layers, | ||
kernel_size, | ||
p_dropout) | ||
|
||
def forward(self, x, x_lengths, f0=None): | ||
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) | ||
x = self.pre(x) * x_mask | ||
x = x + self.f0_emb(f0.long()).transpose(1,2) | ||
x = self.enc_(x * x_mask, x_mask) | ||
stats = self.proj(x) * x_mask | ||
m, logs = torch.split(stats, self.out_channels, dim=1) | ||
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask | ||
|
||
return z, m, logs, x_mask | ||
|
||
|
||
|
||
class DiscriminatorP(torch.nn.Module): | ||
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): | ||
super(DiscriminatorP, self).__init__() | ||
self.period = period | ||
self.use_spectral_norm = use_spectral_norm | ||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | ||
self.convs = nn.ModuleList([ | ||
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), | ||
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), | ||
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), | ||
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), | ||
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))), | ||
]) | ||
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | ||
|
||
def forward(self, x): | ||
fmap = [] | ||
|
||
# 1d to 2d | ||
b, c, t = x.shape | ||
if t % self.period != 0: # pad first | ||
n_pad = self.period - (t % self.period) | ||
x = F.pad(x, (0, n_pad), "reflect") | ||
t = t + n_pad | ||
x = x.view(b, c, t // self.period, self.period) | ||
|
||
for l in self.convs: | ||
x = l(x) | ||
x = F.leaky_relu(x, modules.LRELU_SLOPE) | ||
fmap.append(x) | ||
x = self.conv_post(x) | ||
fmap.append(x) | ||
x = torch.flatten(x, 1, -1) | ||
|
||
return x, fmap | ||
|
||
|
||
class DiscriminatorS(torch.nn.Module): | ||
def __init__(self, use_spectral_norm=False): | ||
super(DiscriminatorS, self).__init__() | ||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | ||
self.convs = nn.ModuleList([ | ||
norm_f(Conv1d(1, 16, 15, 1, padding=7)), | ||
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), | ||
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), | ||
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), | ||
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), | ||
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), | ||
]) | ||
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) | ||
|
||
def forward(self, x): | ||
fmap = [] | ||
|
||
for l in self.convs: | ||
x = l(x) | ||
x = F.leaky_relu(x, modules.LRELU_SLOPE) | ||
fmap.append(x) | ||
x = self.conv_post(x) | ||
fmap.append(x) | ||
x = torch.flatten(x, 1, -1) | ||
|
||
return x, fmap | ||
|
||
|
||
class MultiPeriodDiscriminator(torch.nn.Module): | ||
def __init__(self, use_spectral_norm=False): | ||
super(MultiPeriodDiscriminator, self).__init__() | ||
periods = [2,3,5,7,11] | ||
|
||
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] | ||
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods] | ||
self.discriminators = nn.ModuleList(discs) | ||
|
||
def forward(self, y, y_hat): | ||
y_d_rs = [] | ||
y_d_gs = [] | ||
fmap_rs = [] | ||
fmap_gs = [] | ||
for i, d in enumerate(self.discriminators): | ||
y_d_r, fmap_r = d(y) | ||
y_d_g, fmap_g = d(y_hat) | ||
y_d_rs.append(y_d_r) | ||
y_d_gs.append(y_d_g) | ||
fmap_rs.append(fmap_r) | ||
fmap_gs.append(fmap_g) | ||
|
||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | ||
|
||
|
||
class SpeakerEncoder(torch.nn.Module): | ||
def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256): | ||
super(SpeakerEncoder, self).__init__() | ||
self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True) | ||
self.linear = nn.Linear(model_hidden_size, model_embedding_size) | ||
self.relu = nn.ReLU() | ||
|
||
def forward(self, mels): | ||
self.lstm.flatten_parameters() | ||
_, (hidden, _) = self.lstm(mels) | ||
embeds_raw = self.relu(self.linear(hidden[-1])) | ||
return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True) | ||
|
||
def compute_partial_slices(self, total_frames, partial_frames, partial_hop): | ||
mel_slices = [] | ||
for i in range(0, total_frames-partial_frames, partial_hop): | ||
mel_range = torch.arange(i, i+partial_frames) | ||
mel_slices.append(mel_range) | ||
|
||
return mel_slices | ||
|
||
def embed_utterance(self, mel, partial_frames=128, partial_hop=64): | ||
mel_len = mel.size(1) | ||
last_mel = mel[:,-partial_frames:] | ||
|
||
if mel_len > partial_frames: | ||
mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop) | ||
mels = list(mel[:,s] for s in mel_slices) | ||
mels.append(last_mel) | ||
mels = torch.stack(tuple(mels), 0).squeeze(1) | ||
|
||
with torch.no_grad(): | ||
partial_embeds = self(mels) | ||
embed = torch.mean(partial_embeds, axis=0).unsqueeze(0) | ||
#embed = embed / torch.linalg.norm(embed, 2) | ||
else: | ||
with torch.no_grad(): | ||
embed = self(last_mel) | ||
|
||
return embed | ||
|
||
|
||
class SynthesizerTrn(nn.Module): | ||
""" | ||
Synthesizer for Training | ||
""" | ||
|
||
def __init__(self, | ||
spec_channels, | ||
segment_size, | ||
inter_channels, | ||
hidden_channels, | ||
filter_channels, | ||
n_heads, | ||
n_layers, | ||
kernel_size, | ||
p_dropout, | ||
resblock, | ||
resblock_kernel_sizes, | ||
resblock_dilation_sizes, | ||
upsample_rates, | ||
upsample_initial_channel, | ||
upsample_kernel_sizes, | ||
gin_channels, | ||
ssl_dim, | ||
n_speakers, | ||
**kwargs): | ||
|
||
super().__init__() | ||
self.spec_channels = spec_channels | ||
self.inter_channels = inter_channels | ||
self.hidden_channels = hidden_channels | ||
self.filter_channels = filter_channels | ||
self.n_heads = n_heads | ||
self.n_layers = n_layers | ||
self.kernel_size = kernel_size | ||
self.p_dropout = p_dropout | ||
self.resblock = resblock | ||
self.resblock_kernel_sizes = resblock_kernel_sizes | ||
self.resblock_dilation_sizes = resblock_dilation_sizes | ||
self.upsample_rates = upsample_rates | ||
self.upsample_initial_channel = upsample_initial_channel | ||
self.upsample_kernel_sizes = upsample_kernel_sizes | ||
self.segment_size = segment_size | ||
self.gin_channels = gin_channels | ||
self.ssl_dim = ssl_dim | ||
self.emb_g = nn.Embedding(n_speakers, gin_channels) | ||
|
||
self.enc_p_ = TextEncoder(ssl_dim, inter_channels, hidden_channels, 5, 1, 16,0, filter_channels, n_heads, p_dropout) | ||
hps = { | ||
"sampling_rate": 48000, | ||
"inter_channels": 192, | ||
"resblock": "1", | ||
"resblock_kernel_sizes": [3, 7, 11], | ||
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]], | ||
"upsample_rates": [10, 8, 2, 2], | ||
"upsample_initial_channel": 512, | ||
"upsample_kernel_sizes": [16, 16, 4, 4], | ||
"gin_channels": 256, | ||
} | ||
self.dec = Generator(h=hps) | ||
self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels) | ||
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels) | ||
|
||
def forward(self, c, c_lengths, f0, g=None): | ||
g = self.emb_g(g.unsqueeze(0)).transpose(1,2) | ||
z_p, m_p, logs_p, c_mask = self.enc_p_(c.transpose(1,2), c_lengths, f0=f0_to_coarse(f0)) | ||
z = self.flow(z_p, c_mask, g=g, reverse=True) | ||
o = self.dec(z * c_mask, g=g, f0=f0.float()) | ||
return o | ||
|
Oops, something went wrong.