forked from PlayVoice/whisper-vits-svc
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
5e2e6cb
commit bb6d418
Showing
2 changed files
with
399 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,328 @@ | ||
import copy | ||
import math | ||
import torch | ||
from torch import nn | ||
from torch.nn import functional as F | ||
|
||
import attentions | ||
import commons | ||
import modules | ||
|
||
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d | ||
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm | ||
from commons import init_weights, get_padding | ||
from vdecoder.hifigan.models import Generator | ||
from utils import f0_to_coarse | ||
|
||
class ResidualCouplingBlock(nn.Module): | ||
def __init__(self, | ||
channels, | ||
hidden_channels, | ||
kernel_size, | ||
dilation_rate, | ||
n_layers, | ||
n_flows=4, | ||
gin_channels=0): | ||
super().__init__() | ||
self.channels = channels | ||
self.hidden_channels = hidden_channels | ||
self.kernel_size = kernel_size | ||
self.dilation_rate = dilation_rate | ||
self.n_layers = n_layers | ||
self.n_flows = n_flows | ||
self.gin_channels = gin_channels | ||
|
||
self.flows = nn.ModuleList() | ||
for i in range(n_flows): | ||
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True)) | ||
self.flows.append(modules.Flip()) | ||
|
||
def forward(self, x, x_mask, g=None, reverse=False): | ||
if not reverse: | ||
for flow in self.flows: | ||
x, _ = flow(x, x_mask, g=g, reverse=reverse) | ||
else: | ||
for flow in reversed(self.flows): | ||
x = flow(x, x_mask, g=g, reverse=reverse) | ||
return x | ||
|
||
|
||
class Encoder(nn.Module): | ||
def __init__(self, | ||
in_channels, | ||
out_channels, | ||
hidden_channels, | ||
kernel_size, | ||
dilation_rate, | ||
n_layers, | ||
gin_channels=0): | ||
super().__init__() | ||
self.in_channels = in_channels | ||
self.out_channels = out_channels | ||
self.hidden_channels = hidden_channels | ||
self.kernel_size = kernel_size | ||
self.dilation_rate = dilation_rate | ||
self.n_layers = n_layers | ||
self.gin_channels = gin_channels | ||
|
||
self.pre = nn.Conv1d(in_channels, hidden_channels, 1) | ||
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels) | ||
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) | ||
|
||
def forward(self, x, x_lengths, g=None): | ||
# print(x.shape,x_lengths.shape) | ||
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) | ||
x = self.pre(x) * x_mask | ||
x = self.enc(x, x_mask, g=g) | ||
stats = self.proj(x) * x_mask | ||
m, logs = torch.split(stats, self.out_channels, dim=1) | ||
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask | ||
return z, m, logs, x_mask | ||
|
||
|
||
class TextEncoder(nn.Module): | ||
def __init__(self, | ||
in_channels, | ||
out_channels, | ||
hidden_channels, | ||
kernel_size, | ||
dilation_rate, | ||
n_layers, | ||
gin_channels=0, | ||
filter_channels=None, | ||
n_heads=None, | ||
p_dropout=None): | ||
super().__init__() | ||
self.in_channels = in_channels | ||
self.out_channels = out_channels | ||
self.hidden_channels = hidden_channels | ||
self.kernel_size = kernel_size | ||
self.dilation_rate = dilation_rate | ||
self.n_layers = n_layers | ||
self.gin_channels = gin_channels | ||
self.pre = nn.Conv1d(in_channels, hidden_channels, 1) | ||
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) | ||
self.f0_emb = nn.Embedding(256, hidden_channels) | ||
|
||
self.enc_ = attentions.Encoder( | ||
hidden_channels, | ||
filter_channels, | ||
n_heads, | ||
n_layers, | ||
kernel_size, | ||
p_dropout) | ||
|
||
def forward(self, x, x_lengths, f0=None): | ||
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) | ||
x = self.pre(x) * x_mask | ||
x = x + self.f0_emb(f0.long()).transpose(1,2) | ||
x = self.enc_(x * x_mask, x_mask) | ||
stats = self.proj(x) * x_mask | ||
m, logs = torch.split(stats, self.out_channels, dim=1) | ||
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask | ||
|
||
return z, m, logs, x_mask | ||
|
||
|
||
|
||
class DiscriminatorP(torch.nn.Module): | ||
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): | ||
super(DiscriminatorP, self).__init__() | ||
self.period = period | ||
self.use_spectral_norm = use_spectral_norm | ||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | ||
self.convs = nn.ModuleList([ | ||
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), | ||
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), | ||
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), | ||
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), | ||
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))), | ||
]) | ||
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | ||
|
||
def forward(self, x): | ||
fmap = [] | ||
|
||
# 1d to 2d | ||
b, c, t = x.shape | ||
if t % self.period != 0: # pad first | ||
n_pad = self.period - (t % self.period) | ||
x = F.pad(x, (0, n_pad), "reflect") | ||
t = t + n_pad | ||
x = x.view(b, c, t // self.period, self.period) | ||
|
||
for l in self.convs: | ||
x = l(x) | ||
x = F.leaky_relu(x, modules.LRELU_SLOPE) | ||
fmap.append(x) | ||
x = self.conv_post(x) | ||
fmap.append(x) | ||
x = torch.flatten(x, 1, -1) | ||
|
||
return x, fmap | ||
|
||
|
||
class DiscriminatorS(torch.nn.Module): | ||
def __init__(self, use_spectral_norm=False): | ||
super(DiscriminatorS, self).__init__() | ||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | ||
self.convs = nn.ModuleList([ | ||
norm_f(Conv1d(1, 16, 15, 1, padding=7)), | ||
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), | ||
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), | ||
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), | ||
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), | ||
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), | ||
]) | ||
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) | ||
|
||
def forward(self, x): | ||
fmap = [] | ||
|
||
for l in self.convs: | ||
x = l(x) | ||
x = F.leaky_relu(x, modules.LRELU_SLOPE) | ||
fmap.append(x) | ||
x = self.conv_post(x) | ||
fmap.append(x) | ||
x = torch.flatten(x, 1, -1) | ||
|
||
return x, fmap | ||
|
||
|
||
class MultiPeriodDiscriminator(torch.nn.Module): | ||
def __init__(self, use_spectral_norm=False): | ||
super(MultiPeriodDiscriminator, self).__init__() | ||
periods = [2,3,5,7,11] | ||
|
||
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] | ||
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods] | ||
self.discriminators = nn.ModuleList(discs) | ||
|
||
def forward(self, y, y_hat): | ||
y_d_rs = [] | ||
y_d_gs = [] | ||
fmap_rs = [] | ||
fmap_gs = [] | ||
for i, d in enumerate(self.discriminators): | ||
y_d_r, fmap_r = d(y) | ||
y_d_g, fmap_g = d(y_hat) | ||
y_d_rs.append(y_d_r) | ||
y_d_gs.append(y_d_g) | ||
fmap_rs.append(fmap_r) | ||
fmap_gs.append(fmap_g) | ||
|
||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | ||
|
||
|
||
class SpeakerEncoder(torch.nn.Module): | ||
def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256): | ||
super(SpeakerEncoder, self).__init__() | ||
self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True) | ||
self.linear = nn.Linear(model_hidden_size, model_embedding_size) | ||
self.relu = nn.ReLU() | ||
|
||
def forward(self, mels): | ||
self.lstm.flatten_parameters() | ||
_, (hidden, _) = self.lstm(mels) | ||
embeds_raw = self.relu(self.linear(hidden[-1])) | ||
return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True) | ||
|
||
def compute_partial_slices(self, total_frames, partial_frames, partial_hop): | ||
mel_slices = [] | ||
for i in range(0, total_frames-partial_frames, partial_hop): | ||
mel_range = torch.arange(i, i+partial_frames) | ||
mel_slices.append(mel_range) | ||
|
||
return mel_slices | ||
|
||
def embed_utterance(self, mel, partial_frames=128, partial_hop=64): | ||
mel_len = mel.size(1) | ||
last_mel = mel[:,-partial_frames:] | ||
|
||
if mel_len > partial_frames: | ||
mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop) | ||
mels = list(mel[:,s] for s in mel_slices) | ||
mels.append(last_mel) | ||
mels = torch.stack(tuple(mels), 0).squeeze(1) | ||
|
||
with torch.no_grad(): | ||
partial_embeds = self(mels) | ||
embed = torch.mean(partial_embeds, axis=0).unsqueeze(0) | ||
#embed = embed / torch.linalg.norm(embed, 2) | ||
else: | ||
with torch.no_grad(): | ||
embed = self(last_mel) | ||
|
||
return embed | ||
|
||
|
||
class SynthesizerTrn(nn.Module): | ||
""" | ||
Synthesizer for Training | ||
""" | ||
|
||
def __init__(self, | ||
spec_channels, | ||
segment_size, | ||
inter_channels, | ||
hidden_channels, | ||
filter_channels, | ||
n_heads, | ||
n_layers, | ||
kernel_size, | ||
p_dropout, | ||
resblock, | ||
resblock_kernel_sizes, | ||
resblock_dilation_sizes, | ||
upsample_rates, | ||
upsample_initial_channel, | ||
upsample_kernel_sizes, | ||
gin_channels, | ||
ssl_dim, | ||
n_speakers, | ||
**kwargs): | ||
|
||
super().__init__() | ||
self.spec_channels = spec_channels | ||
self.inter_channels = inter_channels | ||
self.hidden_channels = hidden_channels | ||
self.filter_channels = filter_channels | ||
self.n_heads = n_heads | ||
self.n_layers = n_layers | ||
self.kernel_size = kernel_size | ||
self.p_dropout = p_dropout | ||
self.resblock = resblock | ||
self.resblock_kernel_sizes = resblock_kernel_sizes | ||
self.resblock_dilation_sizes = resblock_dilation_sizes | ||
self.upsample_rates = upsample_rates | ||
self.upsample_initial_channel = upsample_initial_channel | ||
self.upsample_kernel_sizes = upsample_kernel_sizes | ||
self.segment_size = segment_size | ||
self.gin_channels = gin_channels | ||
self.ssl_dim = ssl_dim | ||
self.emb_g = nn.Embedding(n_speakers, gin_channels) | ||
|
||
self.enc_p_ = TextEncoder(ssl_dim, inter_channels, hidden_channels, 5, 1, 16,0, filter_channels, n_heads, p_dropout) | ||
hps = { | ||
"sampling_rate": 32000, | ||
"inter_channels": 192, | ||
"resblock": "1", | ||
"resblock_kernel_sizes": [3, 7, 11], | ||
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]], | ||
"upsample_rates": [10, 8, 2, 2], | ||
"upsample_initial_channel": 512, | ||
"upsample_kernel_sizes": [16, 16, 4, 4], | ||
"gin_channels": 256, | ||
} | ||
self.dec = Generator(h=hps) | ||
self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels) | ||
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels) | ||
|
||
def forward(self, c, c_lengths, f0, g=None): | ||
g = self.emb_g(g.unsqueeze(0)).transpose(1,2) | ||
z_p, m_p, logs_p, c_mask = self.enc_p_(c.transpose(1,2), c_lengths, f0=f0_to_coarse(f0)) | ||
z = self.flow(z_p, c_mask, g=g, reverse=True) | ||
o = self.dec(z * c_mask, g=g, f0=f0.float()) | ||
return o | ||
|
Oops, something went wrong.