-
-
Notifications
You must be signed in to change notification settings - Fork 154
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
test Flux 0.13 #699
Merged
Merged
test Flux 0.13 #699
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
MWE of the stuff ODE solver problem: using Flux, Zygote, ForwardDiff
import ForwardDiff: Dual
y = Float32[1.2449092, 0.26629877]
p = Float32[0.14421135, -0.006150621, 0.0393358, 0.138404, 0.23749629, 0.06463469, -0.029445898, -0.33279192, -0.094798535, -0.257304, -0.3355695, -0.1959481, 0.12938745, 0.14058144, 0.32916018, -0.23945713, -0.18813372, -0.14978944, 0.18167028, -0.22040617, -0.16580728, -0.09962158, -0.12878253, 0.24638167, -0.03310824, 0.07440266, 0.03885393, 0.27210253, -0.053823117, -0.14623246, -0.034661364, 0.049675502, 0.16398363, -0.30591217, 0.18999895, -0.26469624, 0.28702003, 0.20897748, -0.32785562, -0.100942954, -0.32169065, 0.21481845, 0.09703442, 0.30915034, 0.09057236, -0.15546058, -0.24163458, -0.13516225, -0.06676043, -0.1966813, 0.12077151, 0.056194287, -0.16526969, -0.2222915, -0.19672059, -0.034455374, -0.24578816, 0.18768719, -0.23405759, 0.046496972, -0.258523, 0.058912445, 0.042145796, -0.13487151, -0.2644665, -0.33397835, -0.29189992, 0.13996881, -0.21306355, 0.15383047, 0.15763333, -0.27050394, 0.3312636, 0.32032087, -0.24478982, -0.1096856, 0.12329024, -0.33420125, -0.1529397, 0.013263283, -0.0321317, -0.28141057, -0.058830447, -0.033951838, -0.18657157, 0.20016932, 0.1548164, 0.028861579, 0.16291597, 0.22635445, -0.090969354, 0.1766979, -0.31983075, 0.07219792, 0.23401073, -0.07207494, 0.24587327, 0.26736307, -0.23342982, 0.08657169, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.19381283, 0.26416284, 0.15891802, -0.12095787, 0.1411279, -0.027013905, 0.30863065, 0.122840405, 0.21558835, -0.15353091, 0.29037133, 0.15146789, 0.045571294, 0.31934103, -0.013038424, 0.19338936, -0.08277726, 0.23436436, -0.25519383, 0.19290958, -0.07854137, 0.25316665, 0.068068326, -0.25551397, 0.29491913, -0.17783256, -0.28973922, -0.102145046, -0.052218888, -0.14526269, -0.20289962, -0.22463948, 0.24003603, -0.22635874, 0.22355433, -0.10727884, -0.27763215, 0.12205175, -0.33481315, 0.04747853, 0.22055429, 0.017725615, -0.14218004, -0.27020591, 0.27612484, 0.050210662, 0.041809335, -0.032814298, -0.21339102, 0.22898024, 0.0755317, -0.23465283, -0.109813884, -0.18060842, -0.066495314, 0.22580191, 0.3323758, 0.023281226, 0.07484222, 0.28912178, -0.27487472, 0.121484526, -0.2651789, 0.19090225, -0.003508792, -0.25500044, 0.05072003, -0.07643754, 0.24113968, 0.12844749, 0.24001858, 0.2613778, -0.2603248, 0.08254892, -0.111656696, 0.23785193, 0.32324004, 0.1750177, -0.09340208, -0.12355742, -0.25986317, -0.27915004, 0.07588966, 0.25872853, 0.21791716, 0.2401611, -0.2407115, -0.23268251, -0.30390444, -0.3009561, -0.02586944, 0.16676147, -0.110212825, -0.17888871, 0.33321387, -0.32094577, -0.25499186, 0.25705588, 0.15148534, -0.28999805, 0.0, 0.0]
t = 1.5f0
λ = Dual{ForwardDiff.Tag{OrdinaryDiffEq.OrdinaryDiffEqTag,Float32},Float32,12}[Dual{ForwardDiff.Tag{OrdinaryDiffEq.OrdinaryDiffEqTag,Float32}}(0.09447026, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0), Dual{ForwardDiff.Tag{OrdinaryDiffEq.OrdinaryDiffEqTag,Float32}}(1.4116058, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)]
model = Chain(x -> x .^ 3,
Dense(2, 50, tanh),
Dense(50, 2))
p, re = Flux.destructure(model)
f(u, p, t) = re(p)(u)
_dy, back = Zygote.pullback(y, p) do u, p
vec(f(u, p, t))
end
tmp1, tmp2 = back(λ) Found via: using DiffEqFlux, OrdinaryDiffEq, Test
u0 = Float32[2.0; 0.0]
datasize = 30
tspan = (0.0f0, 1.5f0)
function trueODEfunc(du, u, p, t)
true_A = [-0.1 2.0; -2.0 -0.1]
du .= ((u .^ 3)'true_A)'
end
t = range(tspan[1], tspan[2], length=datasize)
prob = ODEProblem(trueODEfunc, u0, tspan)
ode_data = Array(solve(prob, Tsit5(), saveat=t))
model = Chain(x -> x .^ 3,
Dense(2, 50, tanh),
Dense(50, 2))
neuralde = NeuralODE(model, tspan, Rodas5(), saveat=t, reltol=1e-7, abstol=1e-9)
function predict_n_ode()
neuralde(u0)
end
loss_n_ode() = sum(abs2, ode_data .- predict_n_ode())
data = Iterators.repeated((), 10)
opt = ADAM(0.1)
cb = function () #callback function to observe training
display(loss_n_ode())
end
# Display the ODE with the initial parameter values.
cb()
neuralde = NeuralODE(model, tspan, Rodas5(), saveat=t, reltol=1e-7, abstol=1e-9)
ps = Flux.params(neuralde)
loss1 = loss_n_ode()
xx = Ref{Any}()
Flux.train!(loss_n_ode, ps, data, opt, cb=cb) with the change: function _vecjacobian!(dλ, y, λ, p, t, S::TS, isautojacvec::ZygoteVJP, dgrad, dy, W) where TS<:SensitivityFunction
@unpack sensealg, f = S
prob = getprob(S)
isautojacvec = get_jacvec(sensealg)
if inplace_sensitivity(S)
if W===nothing
_dy, back = Zygote.pullback(y, p) do u, p
out_ = Zygote.Buffer(similar(u))
f(out_, u, p, t)
vec(copy(out_))
end
else
_dy, back = Zygote.pullback(y, p) do u, p
out_ = Zygote.Buffer(similar(u))
f(out_, u, p, t, W)
vec(copy(out_))
end
end
tmp1,tmp2 = back(λ)
dλ[:] .= vec(tmp1)
dgrad !== nothing && tmp2 !== nothing && (dgrad[:] .= vec(tmp2))
dy !== nothing && (dy[:] .= vec(_dy))
else
if W===nothing
_dy, back = Zygote.pullback(y, p) do u, p
vec(f(u, p, t))
end
else
_dy, back = Zygote.pullback(y, p) do u, p
vec(f(u, p, t, W))
end
end
Main.xx[] = y,p,t,λ
tmp1, tmp2 = back(λ)
tmp1 !== nothing && (dλ[:] .= vec(tmp1))
dy !== nothing && (dy[:] .= vec(_dy))
dgrad !== nothing && tmp2 !== nothing && (dgrad[:] .= vec(tmp2))
end
return
end |
using ForwardDiff, Zygote, Flux
using ForwardDiff: Dual
y = Float32[0.8564646, 0.21083355]
p = Float32[-0.2548858, -0.264061, 0.06902494, -0.23288882, -0.13166176, 0.25982612, -0.26543534, -0.29349443, 0.31963557, 0.21243489, -0.2755482, -0.04317024, 0.2678376, -0.32618907, -0.11215708, -0.20082082, -0.075056225, -0.3250112, -0.20113565, -0.2580761, 0.03797583, -0.1354496, 0.18161258, 0.3180589, 0.283674, 0.05116003, -0.07082515, 0.12914972, 0.09830813, 0.29125124, 0.32423735, 0.045021717, 0.09604585, 0.007445923, 0.12431481, 0.063025564, 0.30161184, 0.23123802, 0.30304855, -0.18616274, 0.06983177, 0.13229537, 0.26679033, 0.29119095, 0.2044387, -0.1310391, 0.06418764, -0.05145624, 0.28958446, 0.08143681, -0.26594874, 0.258198, -0.16387275, 0.23627394, -0.0025739619, 0.12877232, 0.28468516, 0.14945742, -0.09824067, 0.22391124, 0.2722607, 0.034997866, 0.021131594, -0.058169674, -0.20168333, 0.3310362, 0.29977754, 0.27228144, 0.088294245, 0.17472656, 0.030819716, 0.27218765, 0.042448767, 0.25967237, 0.18181679, 0.2810931, -0.16689181, 0.17927635, 0.32586476, -0.25481033, 0.009913104, 0.20943141, -0.13506782, -0.30059853, -0.084571846, -0.31261674, 0.11608189, 0.084546946, -0.21448077, -0.19288287, -0.22511461, 0.27675447, 0.26279518, 0.061226156, -0.2828123, -0.1394083, -0.16996919, 0.2784961, -0.0039018209, -0.1362619, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.048874624, 0.11889865, 0.01040518, 0.12694769, 0.32327807, 0.13581258, 0.10043003, -0.12258695, 0.32029858, -0.05385616, -0.28262973, -0.29426816, 0.11472986, 0.014853499, -0.055616893, -0.24432188, -0.23522359, -0.07780609, 0.16605335, 0.29451388, -0.32305816, 0.03262463, -0.28862894, 0.054972157, 0.2411704, 0.31518432, 0.2221482, -0.12357236, 0.25466782, 0.03921116, -0.087710164, 0.1594814, -0.33685195, -0.13411506, 0.04239876, 0.260748, 0.15104404, 0.24697773, -0.06698533, -0.039195247, 0.29528958, -0.19330974, -0.32768622, 0.07959501, -0.11285911, -0.031941384, -0.108291335, -0.24830729, -0.08987814, -0.04234308, 0.255426, 0.3337179, 0.18690939, -0.32503495, -0.06603645, -0.17818044, 0.10007081, -0.22569874, 0.030490262, -0.014429291, 0.13864784, 0.100892544, -0.28683808, 0.05345175, -0.12727126, 0.31637886, 0.27381366, 0.026415939, 0.20263642, 0.33452004, -0.3351626, 0.0063842274, -0.26546854, -0.24439275, -0.19636214, 0.3032137, 0.13219267, 0.20853092, -0.05988348, -0.30968776, -0.1278926, 0.33035672, -0.32249796, 0.14322737, -0.29625347, -0.17458698, -0.0010983021, 0.14215776, -0.07308902, -0.19241002, 0.1702171, 0.32165667, 0.27042934, 0.068846, 0.19114906, 0.06528145, -0.31603774, 0.049985882, -0.05847536, 0.04034526, 0.0, 0.0]
t = 1.5f0
λ = ForwardDiff.Dual{ForwardDiff.Tag{Nothing,Float32},Float32,12}[Dual{ForwardDiff.Tag{Nothing,Float32}}(0.87135935, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0), Dual{ForwardDiff.Tag{Nothing,Float32}}(1.5225363, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)]
model = Chain(x -> x .^ 3,
Dense(2, 50, tanh),
Dense(50, 2))
p,re = Flux.destructure(model)
f(u, p, t) = re(p)(u)
_dy, back = Zygote.pullback(y, p) do u, p
vec(f(u, p, t))
end
tmp1, tmp2 = back(λ) |
Should work once FluxML/Optimisers.jl#65 |
SciML/NeuralPDE.jl#508 and SciML/DeepEquilibriumNetworks.jl#44 are dependent on this. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
No description provided.