Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add reverse mode AD tests #45

Merged
merged 5 commits into from
Mar 1, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 11 additions & 5 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -15,36 +15,42 @@ Symbolics = "0c5d862f-8b57-4792-8d23-62f2024744c7"
[compat]
Aqua = "0.8"
ComponentArrays = "0.15.11"
DifferentiationInterface = "0.6"
ForwardDiff = "0.10.36"
JET = "0.8, 0.9"
Lux = "1"
LuxCore = "1"
ModelingToolkit = "9.9"
ModelingToolkit = "9.64"
ModelingToolkitStandardLibrary = "2.7"
Optimization = "3.24"
OptimizationOptimisers = "0.2.1"
Optimization = "3.24, 4"
OptimizationOptimisers = "0.2.1, 0.3"
OrdinaryDiffEq = "6.74"
Random = "1.10"
SafeTestsets = "0.1"
SciMLSensitivity = "7.72"
SciMLStructures = "1.1.0"
StableRNGs = "1"
SymbolicIndexingInterface = "0.3.15"
Symbolics = "6.9"
Symbolics = "6.22"
Test = "1.10"
Zygote = "0.6.73"
julia = "1.10"

[extras]
Aqua = "4c88cf16-eb10-579e-8560-4a9242c79595"
DifferentiationInterface = "a0c0ee7d-e4b9-4e03-894e-1c5f64a51d63"
ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210"
JET = "c3a54625-cd67-489e-a8e7-0a5a0ff4e31b"
Optimization = "7f7a1694-90dd-40f0-9382-eb1efda571ba"
OptimizationOptimisers = "42dfb2eb-d2b4-4451-abcd-913932933ac1"
OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed"
SafeTestsets = "1bc83da4-3b8d-516f-aca4-4fe02f6d838f"
SciMLSensitivity = "1ed8b502-d754-442c-8d5d-10ac956f44a1"
SciMLStructures = "53ae85a6-f571-4167-b2af-e1d143709226"
StableRNGs = "860ef19b-820b-49d6-a774-d7a799459cd3"
SymbolicIndexingInterface = "2efcf032-c050-4f8e-a9bb-153293bab1f5"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"

[targets]
test = ["Aqua", "JET", "Test", "OrdinaryDiffEq", "ForwardDiff", "Optimization", "OptimizationOptimisers", "SafeTestsets", "SciMLStructures", "StableRNGs", "SymbolicIndexingInterface"]
test = ["Aqua", "JET", "Test", "OrdinaryDiffEq", "DifferentiationInterface", "SciMLSensitivity", "Zygote", "ForwardDiff", "Optimization", "OptimizationOptimisers", "SafeTestsets", "SciMLStructures", "StableRNGs", "SymbolicIndexingInterface"]
21 changes: 16 additions & 5 deletions test/lotka_volterra.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,9 @@ using SciMLStructures
using SciMLStructures: Tunable, canonicalize
using ForwardDiff
using StableRNGs
using DifferentiationInterface
using SciMLSensitivity
using Zygote: Zygote

function lotka_ude()
@variables t x(t)=3.1 y(t)=1.5
Expand Down Expand Up @@ -59,7 +62,7 @@ prob = ODEProblem{true, SciMLBase.FullSpecialize}(sys, [], (0, 1.0), [])

model_true = structural_simplify(lotka_true())
prob_true = ODEProblem{true, SciMLBase.FullSpecialize}(model_true, [], (0, 1.0), [])
sol_ref = solve(prob_true, Rodas4())
sol_ref = solve(prob_true, Rodas5P(), abstol = 1e-10, reltol = 1e-8)

x0 = default_values(sys)[nn.p]

Expand All @@ -71,7 +74,7 @@ function loss(x, (prob, sol_ref, get_vars, get_refs, set_x))
new_p = set_x(prob, x)
new_prob = remake(prob, p = new_p, u0 = eltype(x).(prob.u0))
ts = sol_ref.t
new_sol = solve(new_prob, Rodas4(), saveat = ts)
new_sol = solve(new_prob, Rodas5P(), abstol = 1e-10, reltol = 1e-8, saveat = ts)

loss = zero(eltype(x))

Expand All @@ -86,14 +89,22 @@ function loss(x, (prob, sol_ref, get_vars, get_refs, set_x))
end
end

of = OptimizationFunction{true}(loss, AutoForwardDiff())
of = OptimizationFunction{true}(loss, AutoZygote())

ps = (prob, sol_ref, get_vars, get_refs, set_x);

@test_call target_modules=(ModelingToolkitNeuralNets,) loss(x0, ps)
@test_opt target_modules=(ModelingToolkitNeuralNets,) loss(x0, ps)

@test all(.!isnan.(ForwardDiff.gradient(Base.Fix2(of, ps), x0)))
∇l1 = DifferentiationInterface.gradient(Base.Fix2(of, ps), AutoForwardDiff(), x0)
∇l2 = DifferentiationInterface.gradient(Base.Fix2(of, ps), AutoFiniteDiff(), x0)
∇l3 = DifferentiationInterface.gradient(Base.Fix2(of, ps), AutoZygote(), x0)

@test all(.!isnan.(∇l1))
@test !iszero(∇l1)

@test ∇l1≈∇l2 rtol=1e-2
@test ∇l1≈∇l3 rtol=1e-5

op = OptimizationProblem(of, x0, ps)

Expand All @@ -111,7 +122,7 @@ op = OptimizationProblem(of, x0, ps)
# false
# end

res = solve(op, Adam(), maxiters = 5000)#, callback = plot_cb)
res = solve(op, Adam(), maxiters = 10000)#, callback = plot_cb)

@test res.objective < 1

Expand Down
Loading