Skip to content

Commit

Permalink
Fix some typo of readme.
Browse files Browse the repository at this point in the history
  • Loading branch information
AsakusaRinne authored and Oceania2018 committed Mar 4, 2023
1 parent cbf2d81 commit 6b64d4b
Show file tree
Hide file tree
Showing 2 changed files with 30 additions and 19 deletions.
14 changes: 7 additions & 7 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
[![Badge](https://img.shields.io/badge/link-996.icu-red.svg)](https://996.icu/#/en_US)
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/javiercp/BinderTF.NET/master?urlpath=lab)

English | [中文](docs/Readme-CN.md)
English | [中文](docs/README-CN.md)

*master branch is corresponding to tensorflow v2.10, v0.6x branch is from tensorflow v2.6, v0.15-tensorflow1.15 is from tensorflow1.15.*

Expand All @@ -20,13 +20,13 @@ English | [中文](docs/Readme-CN.md)

`SciSharp STACK`'s mission is to bring popular data science technology into the .NET world and to provide .NET developers with a powerful Machine Learning tool set without reinventing the wheel. Since the APIs are kept as similar as possible you can immediately adapt any existing TensorFlow code in C# or F# with a zero learning curve. Take a look at a comparison picture and see how comfortably a TensorFlow/Python script translates into a C# program with TensorFlow.NET.

![pythn vs csharp](docs/assets/syntax-comparision.png)
![python vs csharp](docs/assets/syntax-comparision.png)

SciSharp's philosophy allows a large number of machine learning code written in Python to be quickly migrated to .NET, enabling .NET developers to use cutting edge machine learning models and access a vast number of TensorFlow resources which would not be possible without this project.

In comparison to other projects, like for instance [TensorFlowSharp](https://www.nuget.org/packages/TensorFlowSharp/) which only provide TensorFlow's low-level C++ API and can only run models that were built using Python, Tensorflow.NET makes it possible to build the pipeline of training and inference with pure C# and F#. Besides, Tensorflow.NET provides binding of Tensorflow.Keras to make it easy to transfer your code from python to .NET.

[ML.NET](https://github.com/dotnet/machinelearning) also support using tensorflow as backend to train and infer your model, which provides better integration with .NET.
[ML.NET](https://github.com/dotnet/machinelearning) also take Tensorflow.NET as one of the backends to train and infer your model, which provides better integration with .NET.

## Documention

Expand All @@ -42,7 +42,7 @@ Troubleshooting of running example or installation:[Tensorflow.NET FAQ](tensor

### Installation

You can search the package name in NuGet Manager, or use the commands below in pckage manager console.
You can search the package name in NuGet Manager, or use the commands below in package manager console.

The installation contains two parts, the first is the main body:

Expand All @@ -57,13 +57,13 @@ PM> Install-Package TensorFlow.Keras
The second part is the computing support part. Only one of the following packages is needed, depending on your device and system.

```
### Cpu version for Windows, Linux and Mac
### CPU version for Windows, Linux and Mac
PM> Install-Package SciSharp.TensorFlow.Redist
### Gpu version for Windows (CUDA and CUDNN are required)
### GPU version for Windows (CUDA and cuDNN are required)
PM> Install-Package SciSharp.TensorFlow.Redist-Windows-GPU
### Gpu version for Linux (CUDA and CUDNN are required)
### GPU version for Linux (CUDA and cuDNN are required)
PM> Install-Package SciSharp.TensorFlow.Redist-Linux-GPU
```

Expand Down
35 changes: 23 additions & 12 deletions docs/README-CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ Tensorflow.NET并非对于Python的简单封装,而是基于C API的pure C#实

`SciSharp STACK`开源社区的目标是构建.NET平台下易用的科学计算库,而Tensorflow.NET就是其中最具代表性的仓库之一。在深度学习领域Python是主流,无论是初学者还是资深开发者,模型的搭建和训练都常常使用Python写就的AI框架,比如tensorflow。但在实际应用深度学习模型的时候,又可能希望用到.NET生态,亦或只是因为.NET是自己最熟悉的领域,这时候Tensorflow.NET就有显著的优点,因为它不仅可以和.NET生态很好地贴合,其API还使得开发者很容易将Python代码迁移过来。下面的对比就是很好的例子,Python代码和C#代码有着高度相似的API,这会使得迁移的时候无需做过多修改。

![pythn vs csharp](assets/syntax-comparision.png)
![python vs csharp](assets/syntax-comparision.png)

除了高度相似的API外,Tensorflow.NET与tensorflow也已经打通数据通道,tensorflow训练并保存的模型可以在Tensorflow.NET中直接读取并继续训练或推理,反之Tensorflow.NET保存的模型也可以在tensorflow中读取,这大大方便了模型的训练和部署。

Expand All @@ -50,20 +50,21 @@ Tensorflow.NET并非对于Python的简单封装,而是基于C API的pure C#实
```sh
### 安装Tensorflow.NET
PM> Install-Package TensorFlow.NET

### 安装Tensorflow.Keras
PM> Install-Package TensorFlow.Keras
```

第二部分是计算支持部分,只需要根据自己的设备和系统选择下面之一即可:

```
### CPU版本
### CPU版本,支持Windows、Linux和Mac
PM> Install-Package SciSharp.TensorFlow.Redist
### Windows下的GPU版本(需要安装CUDA和CUDNN
### Windows下的GPU版本(需要安装CUDA和cuDNN
PM> Install-Package SciSharp.TensorFlow.Redist-Windows-GPU
### Linux下的GPU版本(需要安装CUDA和CUDNN
### Linux下的GPU版本(需要安装CUDA和cuDNN
PM> Install-Package SciSharp.TensorFlow.Redist-Linux-GPU
```

Expand Down Expand Up @@ -173,14 +174,24 @@ model.save("./toy_resnet_model");

## Tensorflow.NET版本对应关系

| TensorFlow.NET Versions | tensorflow 1.14, cuda 10.0 | tensorflow 1.15, cuda 10.0 | tensorflow 2.3, cuda 10.1 | tensorflow 2.4, cuda 11 | tensorflow 2.10, cuda 11 |
| -------------------------- | ------------- | -------------- | ------------- | ------------- | ------------ |
| tf.net 0.7+, tf.keras 0.7+ | | | | | x |
| tf.net 0.4x, tf.keras 0.5 | | | | x | |
| tf.net 0.3x, tf.keras 0.4 | | | x | | |
| tf.net 0.2x | | x | x | | |
| tf.net 0.15 | x | x | | | |
| tf.net 0.14 | x | | | | |
| TensorFlow.NET Versions | tensorflow 1.14, cuda 10.0 | tensorflow 1.15, cuda 10.0 | tensorflow 2.3, cuda 10.1 | tensorflow 2.4, cuda 11 | tensorflow 2.7, cuda 11 |tensorflow 2.10, cuda 11 |
| -------------------------- | ------------- | -------------- | ------------- | ------------- | ------------ | ------------ |
| tf.net 0.10x, tf.keras 0.10 | | | | | | x |
| tf.net 0.7x, tf.keras 0.7 | | | | | x | |
| tf.net 0.4x, tf.keras 0.5 | | | | x | | |
| tf.net 0.3x, tf.keras 0.4 | | | x | | | |
| tf.net 0.2x | | x | x | | | |
| tf.net 0.15 | x | x | | | | |
| tf.net 0.14 | x | | | | | |


```
tf.net 0.4x -> tf native 2.4
tf.net 0.6x -> tf native 2.6
tf.net 0.7x -> tf native 2.7
tf.net 0.10x -> tf native 2.10
...
```

如果使用过程中发现有缺失的版本,请告知我们,谢谢!

Expand Down

0 comments on commit 6b64d4b

Please sign in to comment.