Skip to content
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
75 changes: 37 additions & 38 deletions docs/notebooks/3.4 Rooftop PV Tuning.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -36,10 +36,7 @@
"id": "bba9a869-8fbe-450e-8a16-9cff24613e73",
"metadata": {},
"outputs": [],
"source": [
"# !pip install solcast plotly\n",
"# !pip install -U kaleido"
]
"source": "# !pip install solcast plotly kaleido"
},
{
"cell_type": "code",
Expand Down Expand Up @@ -151,7 +148,7 @@
" api_key: str,\n",
"):\n",
" pre_tuned = get_rooftop_data(\n",
" latitude, longitude, site_parameter_estimates, months, period, api_key\n",
" latitude, longitude, site_parameter_estimates, months, PERIOD, api_key\n",
" ).tz_convert(None)\n",
" pre_tuned.columns = [\"solcast_pretuned_estimate\"]\n",
" return pre_tuned\n",
Expand Down Expand Up @@ -202,7 +199,7 @@
" site_parameter_estimates[\"capacity\"],\n",
" args=(\n",
" est[\"pv_power_rooftop\"].loc[meas.index].values,\n",
" meas[power_column_name].values,\n",
" meas[PV_POWER_COLUMN].values,\n",
" ),\n",
" )\n",
" capacity_est = np.round(res.x[0] * site_parameter_estimates[\"capacity\"], 0)\n",
Expand Down Expand Up @@ -346,7 +343,9 @@
"id": "b881add6-c456-4955-96ea-3104af0a22a0",
"metadata": {},
"source": [
"## 1a: Input user Data"
"## 1a: Input user Data\n",
"\n",
"Replace the variables in the following cell with your own values"
]
},
{
Expand All @@ -356,28 +355,28 @@
"metadata": {},
"outputs": [],
"source": [
"api_key = os.environ[\"API_KEY\"]\n",
"API_KEY = os.environ[\"API_KEY\"]\n",
"measurement_data = pd.read_csv(\n",
" \"https://solcast.github.io/solcast-api-python-sdk/notebooks/data/3.4_sample_measurements.csv\",\n",
" index_col=[0],\n",
" parse_dates=True,\n",
") # Make sure this is in kW\n",
"power_column_name = (\n",
"PV_POWER_COLUMN = (\n",
" \"pv_power_rooftop\" # Set this to the name of the power column in measurement_data\n",
")\n",
"longitude = 151.215297\n",
"latitude = -33.856784\n",
"period = \"PT60M\"\n",
"LONGITUDE = 151.215297\n",
"LATITUDE = -33.856784\n",
"PERIOD = \"PT60M\"\n",
"\n",
"# Set this to true if User data is in local timezone and not UTC\n",
"local_timezone = False\n",
"LOCAL_TIMEZONE = False\n",
"\n",
"# Optional inputs. Only supply these if you have a high level of confidence they are close to the true value.\n",
"user_input_azi = None\n",
"user_input_tilt = None\n",
"USER_INPUT_AZI = None\n",
"USER_INPUT_TILT = None\n",
"\n",
"# Save output to csv?\n",
"save_to_csv = False"
"SAVE_TO_CSV = False"
]
},
{
Expand All @@ -397,10 +396,10 @@
"source": [
"# setup estimates\n",
"site_parameter_estimates = {}\n",
"if user_input_azi is not None:\n",
" site_parameter_estimates[\"azimuth\"] = user_input_azi\n",
"if user_input_tilt is not None:\n",
" site_parameter_estimates[\"tilt\"] = user_input_tilt"
"if USER_INPUT_AZI is not None:\n",
" site_parameter_estimates[\"azimuth\"] = USER_INPUT_AZI\n",
"if USER_INPUT_TILT is not None:\n",
" site_parameter_estimates[\"tilt\"] = USER_INPUT_TILT"
]
},
{
Expand All @@ -419,9 +418,9 @@
],
"source": [
"# align to UTC if required\n",
"utc_offset = longitude // 15\n",
"utc_offset = LONGITUDE // 15\n",
"utc_offset = pd.Timedelta(f\"{utc_offset}h\")\n",
"if local_timezone:\n",
"if LOCAL_TIMEZONE:\n",
" measurement_data.index = measurement_data.index - utc_offset\n",
"print(\n",
" \"We estimate your UTC offset is \", utc_offset, \". You can update this if incorrect.\"\n",
Expand Down Expand Up @@ -450,13 +449,13 @@
"source": [
"# required for all grid searches\n",
"KWARGS = {\n",
" \"latitude\": latitude,\n",
" \"longitude\": longitude,\n",
" \"latitude\": LATITUDE,\n",
" \"longitude\": LONGITUDE,\n",
" \"meas\": measurement_data,\n",
" \"months\": months,\n",
" \"site_parameter_estimates\": site_parameter_estimates,\n",
" \"period\": period,\n",
" \"api_key\": api_key,\n",
" \"period\": PERIOD,\n",
" \"api_key\": API_KEY,\n",
"}"
]
},
Expand Down Expand Up @@ -543,11 +542,11 @@
],
"source": [
"# take an initial capacity estimate and show an initial estimation with no tuning\n",
"capacity_initial_estimate = measurement_data[power_column_name].max()\n",
"capacity_initial_estimate = measurement_data[PV_POWER_COLUMN].max()\n",
"site_parameter_estimates[\"capacity\"] = capacity_initial_estimate\n",
"\n",
"pre_tuned = get_solcast_untuned(\n",
" latitude, longitude, site_parameter_estimates, months, api_key\n",
" LATITUDE, LONGITUDE, site_parameter_estimates, months, API_KEY\n",
")\n",
"display_evaluation_plots(measurement_data, pre_tuned)"
]
Expand Down Expand Up @@ -767,15 +766,15 @@
}
],
"source": [
"if user_input_azi is None:\n",
"if USER_INPUT_AZI is None:\n",
" # Use these defaults or update the range if you prefer\n",
" initial_azi_min = -180\n",
" initial_azi_max = 180\n",
" azi_delta = 45\n",
"else:\n",
" azi_delta = 45\n",
" initial_azi_min = user_input_azi - azi_delta\n",
" initial_azi_max = user_input_azi + azi_delta\n",
" initial_azi_min = USER_INPUT_AZI - azi_delta\n",
" initial_azi_max = USER_INPUT_AZI + azi_delta\n",
"\n",
"# Initial wide search\n",
"initial_azimuth_search = np.arange(\n",
Expand Down Expand Up @@ -962,15 +961,15 @@
}
],
"source": [
"if user_input_tilt is None:\n",
"if USER_INPUT_TILT is None:\n",
" # Use these defaults or update the range if you prefer\n",
" initial_tilt_min = 0\n",
" initial_tilt_max = 90\n",
" tilt_delta = 10\n",
"else:\n",
" tilt_delta = 10\n",
" initial_tilt_min = user_input_tilt - tilt_delta\n",
" initial_tilt_max = user_input_tilt + tilt_delta\n",
" initial_tilt_min = USER_INPUT_TILT - tilt_delta\n",
" initial_tilt_max = USER_INPUT_TILT + tilt_delta\n",
"\n",
"\n",
"# Initial wide search\n",
Expand Down Expand Up @@ -1189,23 +1188,23 @@
],
"source": [
"est_final = get_rooftop_data(\n",
" latitude, longitude, site_parameter_estimates, months, period, api_key\n",
" LATITUDE, LONGITUDE, site_parameter_estimates, months, PERIOD, API_KEY\n",
").tz_convert(None)[\"pv_power_rooftop\"]\n",
"\n",
"est_df = pd.DataFrame(\n",
" data={\n",
" \"meas\": measurement_data[power_column_name],\n",
" \"meas\": measurement_data[PV_POWER_COLUMN],\n",
" \"solcast_estimate\": est_final,\n",
" \"solcast_pre_tuned\": pre_tuned[\"solcast_pretuned_estimate\"],\n",
" },\n",
" index=measurement_data.index,\n",
")\n",
"if save_to_csv:\n",
"if SAVE_TO_CSV:\n",
" est_df.to_csv(\"Solcast_Tuned_Rooftop_PV.csv\")\n",
"\n",
"print(\"Tuned Parameter Estimates:\", site_parameter_estimates)\n",
"\n",
"results = calculate_stats(measurement_data[power_column_name], est_final, df=True)\n",
"results = calculate_stats(measurement_data[PV_POWER_COLUMN], est_final, df=True)\n",
"display_evaluation_plots(meas=measurement_data, est=est_final, untuned=pre_tuned)"
]
}
Expand Down
Loading
Loading