Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Get LoRA script to work for single gpus #35

Open
wants to merge 5 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions core/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -112,7 +112,7 @@ def setup_extras_post(self, extras: Extras, models: Models, optimizers: Optimize

# perform the training here
@abstractmethod
def train(self, data: Data, extras: Extras, models: Models, optimizers: Optimizers, schedulers: Schedulers):
def train(self, data: Data, extras: Extras, models: Models, optimizers: Optimizers, schedulers: Schedulers, single_gpu: bool=False):
raise NotImplementedError("This method needs to be overriden")
# ------------

Expand Down Expand Up @@ -357,7 +357,7 @@ def __call__(self, single_gpu=False):
# TRAIN
if self.is_main_node:
print("**TRAINING STARTING...**")
self.train(data, extras, models, optimizers, schedulers)
self.train(data, extras, models, optimizers, schedulers, single_gpu)

if single_gpu is False:
barrier()
Expand Down
11 changes: 6 additions & 5 deletions train/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -239,7 +239,7 @@ def decode_latents(self, latents: torch.Tensor, batch: dict, models: Models, ext
raise NotImplementedError("This method needs to be overriden")

def train(self, data: WarpCore.Data, extras: WarpCore.Extras, models: Models, optimizers: Optimizers,
schedulers: WarpCore.Schedulers):
schedulers: WarpCore.Schedulers, single_gpu: bool=False):
start_iter = self.info.iter + 1
max_iters = self.config.updates * self.config.grad_accum_steps
if self.is_main_node:
Expand Down Expand Up @@ -304,13 +304,14 @@ def train(self, data: WarpCore.Data, extras: WarpCore.Extras, models: Models, op
'bucket_ranges': extras.gdf.loss_weight.bucket_ranges.tolist(),
'bucket_losses': extras.gdf.loss_weight.bucket_losses.tolist(),
}
self.save_checkpoints(models, optimizers)
self.save_checkpoints(models, optimizers, single_gpu=single_gpu)
if self.is_main_node:
create_folder_if_necessary(f'{self.config.output_path}/{self.config.experiment_id}/')
self.sample(models, data, extras)

def save_checkpoints(self, models: Models, optimizers: Optimizers, suffix=None):
barrier()
def save_checkpoints(self, models: Models, optimizers: Optimizers, suffix=None, single_gpu=False):
if not single_gpu:
barrier()
suffix = '' if suffix is None else suffix
self.save_info(self.info, suffix=suffix)
models_dict = models.to_dict()
Expand All @@ -325,7 +326,7 @@ def save_checkpoints(self, models: Models, optimizers: Optimizers, suffix=None):
self.save_optimizer(optimizer, f'{key}_optim{suffix}',
fsdp_model=models_dict[key] if self.config.use_fsdp else None)
if suffix == '' and self.info.total_steps > 1 and self.info.total_steps % self.config.backup_every == 0:
self.save_checkpoints(models, optimizers, suffix=f"_{self.info.total_steps // 1000}k")
self.save_checkpoints(models, optimizers, suffix=f"_{self.info.total_steps // 1000}k", single_gpu=single_gpu)
torch.cuda.empty_cache()

def sample(self, models: Models, data: WarpCore.Data, extras: Extras):
Expand Down
6 changes: 3 additions & 3 deletions train/train_c_lora.py
Original file line number Diff line number Diff line change
Expand Up @@ -320,11 +320,11 @@ def decode_latents(self, latents: torch.Tensor, batch: dict, models: Models, ext

if __name__ == '__main__':
print("Launching Script")
single_gpu = bool(sys.argv[2]) if len(sys.argv) > 2 else False
warpcore = WurstCore(
config_file_path=sys.argv[1] if len(sys.argv) > 1 else None,
device=torch.device(int(os.environ.get("SLURM_LOCALID")))
device=torch.device(int(os.environ.get("SLURM_LOCALID")) if not single_gpu else 0)
)
warpcore.fsdp_defaults['sharding_strategy'] = ShardingStrategy.NO_SHARD

# RUN TRAINING
warpcore()
warpcore(single_gpu=single_gpu)