Skip to content

End-to-end Netflix BI Project using Python, Azurite, MySQL, and Power BI. Includes data engineering workflows, dynamic dashboards, and cloud storage simulation.

Notifications You must be signed in to change notification settings

Tanu272004/Netflix_analysis_bi_project

Repository files navigation

Netflix Analysis & BI Project

# 🎬 Netflix Analysis & BI Project

An *end-to-end Business Intelligence project* analyzing Netflix content using *Python, **MySQL, **Power BI, and **Azurite* (Azure Storage Emulator). This project demonstrates *real-world BI workflows* including *data pipelines, forecasting with ML, cloud simulation, and dynamic dashboards*.


## ✅ Project Highlights

✔ End-to-end pipeline: Data generation → ETL → Cloud storage → Visualization

✔ *Forecasting: Predict future Netflix content trends using **Linear Regression (scikit-learn)*

✔ *Cloud Simulation*: Azurite for Azure Blob Storage emulation

✔ *Dynamic Dashboard*: Power BI connected to MySQL for live insights

✔ *Professional Documentation*: Includes PDF report and SQL scripts


## 🛠 Tech Stack

- *Python*: Data generation, ETL, ML forecasting

- *Azurite*: Cloud storage simulation

- *Power BI*: Interactive dashboards

- *MySQL*: Database storage & analytics

- *scikit-learn*: Linear Regression for forecasting


## 🔄 Workflow Architecture

## 🔄 Workflow Architecture

1. *Data Generation & Preprocessing (Python)*

  - Created Netflix dataset using Python (with optional Faker for synthetic data).

  - Cleaned and formatted the data for BI processing.

2. *Machine Learning Forecasting*

  - Applied Linear Regression (scikit-learn) to forecast Netflix content trends.

  - Generated forecast_dataset.csv for future predictions.

3. *Data Export & Storage*

  - Saved datasets (netflix_dataset.csv & forecast_dataset.csv) locally.

  - Uploaded datasets to *Azurite* (Azure Blob Storage Emulator) for cloud simulation.

4. *Static Dashboard in Power BI*

  - Imported CSV files into Power BI to create an interactive static dashboard.

5. *Database Integration (MySQL)*

  - Designed schema and tables.

  - Executed queries from sql/netflixqueries.sql to analyze data.

6. *Dynamic Dashboard in Power BI*

  - Connected Power BI to *MySQL* for real-time data analysis.

  - Configured *Data Source Settings* to show live connection.

7. *Documentation*

  - Created a detailed PDF report (Netflix_Project_Report.pdf) summarizing:

  - Architecture

  - Insights

  - Visualizations

** Folder Structure**

netflix-bi-project/ ├── scripts/netflix_etl.py ├── data/netflix_dataset.csv ├── forecast/forecast_dataset.csv ├── sql/netflixqueries.sql ├── powerbi/netflix_dashboard.pbix ├── docs/Netflix_Project_Report.pdf ├── docs/dashboard_screenshot.png ├── requirements.txt └── README.md

***** How To Run****

git clone https://github.com//netflix-bi-project.git cd netflix-bi-project

pip install -r requirements.txt

python scripts/netflix_etl.py

This will generate: • data/netflix_dataset.csv • forecast/forecast_dataset.csv

*** Note*** (If you already have the datasets, you can skip Steps 3 & 4 and directly explore the dashboard.)


👤 Author

Tanmay Sharma
Data Analyst | BI Developer | Python & SQL Enthusiast
📫 Connect with me: LinkedIn | GitHub

About

End-to-end Netflix BI Project using Python, Azurite, MySQL, and Power BI. Includes data engineering workflows, dynamic dashboards, and cloud storage simulation.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages