Skip to content

VidyasagarMSC/PyDataFlowNote

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

29 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๐Ÿ PyDataFlowNote

A comprehensive collection of Python data science, AI, and observability examples

โญ Star & Watch this repository for updates!

Python Jupyter License Colab


๐ŸŽฏ What is PyDataFlowNote?

This repository combines elements from Python (Py), data processing libraries like NumPy, SciPy, scikit-learn, TensorFlow, PyTorch, and the integration of Jupyter notebooks. It reflects the flow of data and computations in a notebook environment, covering:

  • ๐Ÿ“Š Data Processing & Analysis - Modern libraries beyond pandas
  • ๐Ÿ”ข Linear Algebra & Mathematics - SymPy, NumPy, and computational mathematics
  • ๐Ÿค– AI Framework Integration - DSPy with production-ready patterns
  • ๐Ÿ” Observability & Monitoring - AgentOps, Langfuse, and Logfire
  • โœ… Data Validation - Pydantic models and type safety
  • ๐Ÿ““ Interactive Learning - All examples available as Colab notebooks

๐Ÿ“‚ Project Structure

PyDataFlowNote/
โ”œโ”€โ”€ ๐Ÿ“Š data_processing/              # Modern data processing libraries
โ”‚   โ””โ”€โ”€ ๐Ÿ““ libraries.ipynb          # Benchmarking beyond pandas
โ”œโ”€โ”€ ๐Ÿ”ข linear-algebra/              # Mathematical computations
โ”‚   โ””โ”€โ”€ ๐Ÿ““ norm-1D.ipynb            # Vector norms in Python libraries
โ”œโ”€โ”€ ๐Ÿงฎ sympy/                       # Symbolic mathematics
โ”‚   โ””โ”€โ”€ ๐Ÿ““ intro.ipynb              # SymPy introduction and examples
โ”œโ”€โ”€ โœ… pydantic/                     # Data validation and type safety
โ”‚   โ””โ”€โ”€ ๐Ÿ““ intro.ipynb              # Pydantic models and validation
โ”œโ”€โ”€ ๐Ÿ” observability/               # AI agent monitoring and tracking
โ”‚   โ”œโ”€โ”€ ๐Ÿค– agentops_example.py      # AgentOps integration
โ”‚   โ”œโ”€โ”€ ๐Ÿ“Š langfuse_example.py      # Langfuse observability
โ”‚   โ”œโ”€โ”€ ๐Ÿ‘ฅ multiagent.py            # Multi-agent monitoring
โ”‚   โ””โ”€โ”€ ๐Ÿ“‹ requirements.txt         # Dependencies
โ””โ”€โ”€ ๐Ÿš€ dspy/                        # Production DSPy framework
    โ”œโ”€โ”€ ๐Ÿ“‚ src/                     # Core DSPy modules
    โ”œโ”€โ”€ ๐Ÿงช tests/                   # Comprehensive test suite
    โ”œโ”€โ”€ ๐Ÿ“Š data/                    # Sample datasets
    โ””โ”€โ”€ ๐Ÿ“– README.md                # Detailed DSPy guide

๐Ÿ“š Complete Code Samples & Notebooks

๐Ÿ“Š Data Processing & Analysis

๐ŸŽฏ Topic ๐Ÿ““ Jupyter Notebook ๐Ÿš€ Colab ๐Ÿ“„ Article ๐Ÿ“ Description
Modern Data Libraries libraries.ipynb Open In Colab DZone Article Benchmarking and comparison of modern data processing libraries beyond pandas

๐Ÿ”ข Linear Algebra & Mathematics

๐ŸŽฏ Topic ๐Ÿ““ Jupyter Notebook ๐Ÿš€ Colab ๐Ÿ“„ Article ๐Ÿ“ Description
Vector Norms norm-1D.ipynb Open In Colab DZone Article Computing norms of 1D tensors across different Python libraries
Symbolic Math intro.ipynb Open In Colab - Introduction to SymPy for symbolic mathematics and equation solving

โœ… Data Validation & Type Safety

๐ŸŽฏ Topic ๐Ÿ““ Jupyter Notebook ๐Ÿš€ Colab ๐Ÿ“„ Article ๐Ÿ“ Description
Pydantic Models intro.ipynb Open In Colab - Complete guide to Pydantic data validation, nested models, and custom validators

๐Ÿ” AI Observability & Monitoring

๐ŸŽฏ Topic ๐Ÿ’ป Python Script ๐Ÿ“š Documentation ๐Ÿ“ Description
AgentOps Integration agentops_example.py Setup Guide Complete AgentOps integration for AI agent monitoring
Langfuse Observability langfuse_example.py Setup Guide Langfuse integration for LLM application observability
Multi-Agent Systems multiagent.py Setup Guide Monitoring and tracking for complex multi-agent workflows

๐Ÿš€ Production AI Framework (DSPy)

๐ŸŽฏ Component ๐Ÿ’ป Python Module ๐Ÿ“š Documentation ๐Ÿ“ Description
Basic Examples basic_examples.py DSPy README Core DSPy patterns and basic usage examples
Advanced Patterns advanced_patterns.py DSPy README Production patterns with caching, retry logic, and monitoring
Pydantic Integration pydantic_integration.py DSPy README Type-safe DSPy with Pydantic validation
Complete Production complete_example.py DSPy README Full production example with Logfire observability
Configuration config.py DSPy README Environment-based configuration with Pydantic
Monitoring monitoring.py DSPy README System health checks and performance monitoring
Logfire Setup logfire_setup.py DSPy README Complete Logfire observability integration
Test Suite test_pipelines.py DSPy README Comprehensive testing (13/14 tests passing)

โšก Quick Start Guides

๐Ÿ”ฅ For Notebooks (Colab Ready)

  1. Click any Colab badge above to run notebooks instantly
  2. Or clone locally:
    git clone https://github.com/VidyasagarMSC/PyDataFlowNote.git
    cd PyDataFlowNote
    jupyter lab

๐Ÿค– For AI Observability

cd observability
pip install -r requirements.txt
cp .env.template .env
# Edit .env with your API keys
python agentops_example.py

๐Ÿš€ For DSPy Production Framework

cd dspy
pip install -r requirements.txt
cp .env.example .env
# Edit .env with your API keys
python src/basic_examples.py

๐ŸŽ“ Learning Paths

๐Ÿ†• Beginners: Start with Fundamentals

  1. ๐Ÿ“Š Data Processing Libraries - Learn modern alternatives to pandas
  2. ๐Ÿ”ข Linear Algebra Basics - Understanding vector operations
  3. ๐Ÿงฎ Symbolic Mathematics - Solve equations symbolically
  4. โœ… Data Validation - Build type-safe applications

๐Ÿš€ Intermediate: Production AI Systems

  1. ๐Ÿ” AI Observability - Monitor your AI applications
  2. ๐Ÿค– DSPy Basics - Learn DSPy fundamentals
  3. ๐Ÿญ Advanced Patterns - Production-ready patterns
  4. ๐Ÿ“Š Full Integration - Complete observability pipeline

๐Ÿ‘จโ€๐Ÿ’ป Advanced: Enterprise Development

  1. ๐Ÿงช Testing Strategies - Comprehensive test coverage
  2. โš™๏ธ Configuration Management - Environment-based setup
  3. ๐Ÿ“ˆ Performance Monitoring - System health tracking
  4. ๐Ÿ”ฅ Observability Integration - Production monitoring

๐Ÿ› ๏ธ Technologies Covered

๐Ÿ“Š Data Science Stack

  • NumPy - Numerical computing
  • Pandas - Data manipulation (plus alternatives)
  • SciPy - Scientific computing
  • SymPy - Symbolic mathematics
  • Polars - Fast DataFrames
  • DuckDB - In-process SQL OLAP database

๐Ÿค– AI & Machine Learning

  • DSPy - Programmingโ€”not promptingโ€”language models
  • OpenAI - GPT models integration
  • Anthropic - Claude models integration
  • Pydantic - Data validation for AI applications

๐Ÿ” Observability & Monitoring

  • Logfire - Pydantic's observability platform
  • AgentOps - AI agent monitoring
  • Langfuse - LLM application observability
  • Structlog - Structured logging
  • psutil - System monitoring

๐Ÿงช Development Tools

  • Pytest - Testing framework
  • Black - Code formatting
  • MyPy - Type checking
  • Jupyter - Interactive development
  • Google Colab - Cloud notebooks

๐Ÿ“ˆ Project Status

๐Ÿ“‚ Component ๐ŸŸข Status ๐Ÿ“Š Coverage ๐Ÿš€ Colab Ready
Data Processing โœ… Complete 100% โœ… Yes
Linear Algebra โœ… Complete 100% โœ… Yes
SymPy Examples โœ… Complete 100% โœ… Yes
Pydantic Guide โœ… Complete 100% โœ… Yes
Observability โœ… Complete 3 Examples โŒ Local Only
DSPy Framework โœ… Complete 93% Tests โŒ Local Only

๐Ÿค Contributing

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-addition
  3. Add your notebook or code with comprehensive documentation
  4. Ensure Colab compatibility for notebooks
  5. Add entry to this README in the appropriate table
  6. Submit a pull request with detailed description

๐Ÿ“ Contribution Guidelines

  • Notebooks: Must be Colab-compatible with clear explanations
  • Code: Include type hints and comprehensive docstrings
  • Documentation: Update README tables with new content
  • Testing: Add tests for new functionality
  • Examples: Provide practical, real-world examples

๐Ÿ“š External Resources

๐Ÿ“„ Published Articles

๐Ÿ”— Useful Links


๐Ÿ“„ License

MIT License - see License file for details


๐Ÿ†˜ Support

  • ๐Ÿ› Issues: Create GitHub issues for bugs and feature requests
  • ๐Ÿ’ก Discussions: Use GitHub Discussions for questions
  • ๐Ÿ“ง Contact: Open an issue for direct communication
  • โญ Star: Show support by starring the repository

๐ŸŽฏ Status: ACTIVELY MAINTAINED โœ…

This repository is continuously updated with new examples, patterns, and best practices for Python data science and AI development.

About

As I explore Python libraries....

Topics

Resources

License

Stars

Watchers

Forks