Step 1. Install miniconda
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh
Step 2. Install MuJoCo
Step 3. Clone repo and create conda environment
conda env create -f environment.yml
conda activate AdvIL_from_videos
python train_expert.py task=walker_walk seed=0 agent=ddpg frame_skip=1
Create a new directory expert_policies
, move the trained expert policy in expert_policies
.
Alternatively, download the policies here and unzip in main directory.
DAC
python train_w_expert_MDP.py task=walker_walk seed=0 GAN_loss=bce from_dem=true
DACfO
python train_w_expert_MDP.py task=walker_walk seed=0 GAN_loss=bce from_dem=false
patchAIL
python train_LAIL.py task=walker_walk agent=patchAIL seed=0 GAN_loss=bce discriminator_lr=1e-4
LAIfO
python train_LAIL.py task=walker_walk agent=lail seed=0 GAN_loss=bce from_dem=false
VMAIL
python train_VMAIL.py task=walker_walk seed=0 GAN_loss=bce from_dem=true
LAIL
python train_LAIL.py task=walker_walk agent=lail seed=0 GAN_loss=bce from_dem=true
The curves for experiments in the paper can be found in the curves repository.
If you use this repo in your research, please consider citing
@article{giammarino2023adversarial,
title={Adversarial imitation learning from visual observations using latent information},
author={Giammarino, Vittorio and Queeney, James and Paschalidis, Ioannis Ch},
journal={arXiv preprint arXiv:2309.17371},
year={2023}
}
This repo is based on the drqv2 repo.