- Data collection and recording
- Convert videos into frames
- Data Labelling & Annotation
- Convert Json format into txt format
- Splitting images and labels into train, val and test folders
- Model Training
- Detection Results
- Create & Activate Conda Environment
conda create –n yolov5 python=3.8
conda activate yolov5
- Clone YOLOv5 & Install Requirments
git clone https://github.com/ultralytics/yolov5.git
pip install -r requirements.txt
- Model training using pre-trained model (yolov5s.pt) model on GPU (device 0)
python train.py --img 640 --batch 16 --epochs 100 --data data.yaml --weights yolov5s.pt --device 0
python export.py --weights runs/train/exp/weights/best.pt --include onnx
python detect.py --weights runs/train/exp/weights/best.pt --source demo.mp4 --conf 0.25