---## Features
- Content Analysis: Sends video data to backend API for content safety analysis
This is a monorepo containing three interconnected components that work together to provide comprehensive video content safety monitoring:- Playback Control: Adjusts video playback speed based on content analysis
- Visual Filters: Applies color tone filters to reduce harsh visuals
brainsafe/
├── extension/ # Chrome Extension - Frontend client## Installation
├── backend/ # Django API - Content analysis service
├── sdk-agent/ # SDK Agent - Integration toolkit1. Open Chrome and navigate to `chrome://extensions/`
└── docs/ # Documentation and resources2. Enable "Developer mode" in the top right corner
```3. Click "Load unpacked extension" button
4. Select the `extension` folder (not the root `brainsafe` folder)
### 🔧 Components Overview5. The BrainSafe extension will appear in your browser toolbar
| Component | Technology | Purpose | Status |## Testing
|-----------|------------|---------|--------|
| **Chrome Extension** | JavaScript, HTML, CSS | Browser-based video interception and safety controls | ✅ Complete |1. After installation, open the `extension/test-page.html` file in Chrome
| **Backend API** | Django, Python, AI/ML | Video content analysis and safety scoring | 🚧 In Development |2. Click the BrainSafe extension icon to open the control panel
| **SDK Agent** | Python/Node.js | Integration toolkit for third-party platforms | 📋 Planned |3. Play the test videos to see different safety behaviors:
- Video 1: Normal playback (safe content)
--- - Video 2: Reduced speed + filters (moderate content)
- Video 3: Warning dialog + pause (risky content)
## 🚀 Quick Start4. Check the browser console (F12) for debug messages
### Prerequisites## Usage
- Node.js 16+
- Python 3.8+1. Navigate to any webpage with video content (YouTube, news sites, etc.)
- Chrome Browser2. The extension automatically detects and monitors videos
- Git3. Content is analyzed using a mock backend API (placeholder)
4. Safety measures are applied automatically:
### 1. Clone Repository - **Speed Reduction**: Slows down intense content
```bash - **Visual Filters**: Tone down colors and brightness
git clone <repository-url> - **Warnings**: Shows alerts for inappropriate content
cd brainsafe
```## Development
### 2. Set Up Chrome Extension### Project Structure
```bash```
cd extensionbrainsafe/
# Follow extension/README.md for installation├── extension/ # Chrome Extension
```│ ├── manifest.json # Extension configuration
│ ├── content.js # Content script for video manipulation
### 3. Set Up Backend API│ ├── background.js # Service worker for API communication
```bash│ ├── popup.html # Extension popup interface
cd backend│ ├── popup.js # Popup functionality
pip install -r requirements.txt│ ├── styles.css # Styling
python manage.py migrate│ ├── test-page.html # Demo page for testing
python manage.py runserver│ └── icons/ # Extension icons
# Follow backend/README.md for detailed setup├── backend/ # Backend API (planned)
```│ └── README.md # Backend documentation
├── .github/ # Project configuration
### 4. Set Up SDK Agent└── README.md # Main documentation
```bash```
cd sdk-agent
# Follow sdk-agent/README.md for installation### API Integration
```The extension communicates with a backend API endpoint to analyze video content and receive safety recommendations.
---**Current Status**: Uses mock API responses for demonstration
**API Endpoint**: `https://api.brainsafe.placeholder.com/analyze` (placeholder)
## 📚 Component Documentation
#### API Request Format:
### [Chrome Extension](./extension/README.md)```json
Browser extension that intercepts video elements on web pages and applies safety measures in real-time.{
"videoData": {
**Key Features:** "src": "video_url",
- Automatic video detection across all websites "duration": 120,
- Real-time content analysis integration "videoWidth": 1920,
- Playback speed control and visual filters "videoHeight": 1080,
- Parental warning system with user controls "url": "page_url",
- Comprehensive settings and monitoring dashboard "title": "page_title"
},
### [Backend API](./backend/README.md) "timestamp": 1640995200000
Django-based REST API that provides AI-powered video content analysis and safety scoring.}
Key Features:
-
Video content analysis using ML models#### API Response Format:
-
Safety level classification (safe/moderate/risky)```json
-
RESTful API with authentication{
-
Database storage for analysis results "safetyLevel": "safe|moderate|risky",
-
Scalable deployment architecture "confidence": 0.85,
"actions": {
SDK Agent "reduceSpeed": false,
Integration toolkit that enables third-party platforms to incorporate BrainSafe functionality. "speedFactor": 0.75,
"applyFilters": true,
Key Features: "filters": ["tone-down"],
-
Easy integration APIs for web platforms "showWarning": false,
-
Customizable safety policies "warningMessage": "Custom warning text"
-
Analytics and reporting tools },
-
Multi-language support "analysisId": "unique_id",
-
Enterprise-grade security "timestamp": 1640995200000
}
---```
- Replace the placeholder API endpoint in
extension/background.js
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐3. Update the `analyzeVideo()` method to use real API calls
│ Chrome │ │ Backend API │ │ SDK Agent │4. Handle error cases and fallbacks appropriately
│ Extension │◄──►│ (Django) │◄──►│ (Integration) │5. Deploy backend API (see `backend/README.md` for details)
│ │ │ │ │ │
│ • Video Detection│ │ • Content Analysis│ │ • Platform APIs │## License
│ • Safety Controls│ │ • ML Models │ │ • Custom Policies│MIT License
│ • User Interface │ │ • Database │ │ • Analytics │
└─────────────────┘ └─────────────────┘ └─────────────────┘
# Install all dependencies
npm run install-all
# Start all services in development mode
npm run dev
# Run tests across all components
npm run test
# Build for production
npm run build- JavaScript: ESLint + Prettier configuration
- Python: Black formatter + Flake8 linting
- Git: Conventional commit messages
- Testing: Unit tests required for all components
- Build extension package
- Submit to Chrome Web Store
- Configure API endpoints for production
- Deploy to cloud provider (AWS/GCP/Azure)
- Set up database and ML model services
- Configure authentication and rate limiting
- Package and publish to npm/PyPI
- Generate API documentation
- Provide integration examples
- Extension Usage: User engagement and safety interventions
- API Performance: Response times and analysis accuracy
- Content Analysis: Safety trend analysis and model improvements
- Error Tracking: Comprehensive logging and alerting
- Fork the repository
- Create feature branch (
git checkout -b feature/amazing-feature) - Follow component-specific development guides
- Run tests and ensure code quality
- Submit pull request with detailed description
See individual component READMEs for specific contribution guidelines.
This project is licensed under the MIT License - see the LICENSE file for details.
- Documentation: Check component-specific READMEs
- Issues: Create GitHub issues for bugs and feature requests
- Community: Join our Discord/Slack for discussions
- Enterprise: Contact team for business inquiries
Building a safer digital environment for children, one video at a time. 🛡️👶