Skip to content

Parametrize module morphisms by raw bundles #2265

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Jan 31, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,14 @@ Bug-fixes
Non-backwards compatible changes
--------------------------------

* The modules and morphisms in `Algebra.Module.Morphism.Structures` are now
parametrized by _raw_ bundles rather than lawful bundles, in line with other
modules defining morphism structures.
* The definitions in `Algebra.Module.Morphism.Construct.Composition` are now
parametrized by _raw_ bundles, and as such take a proof of transitivity.
* The definitions in `Algebra.Module.Morphism.Construct.Identity` are now
parametrized by _raw_ bundles, and as such take a proof of reflexivity.

Other major improvements
------------------------

Expand Down
130 changes: 69 additions & 61 deletions src/Algebra/Module/Morphism/Construct/Composition.agda
Original file line number Diff line number Diff line change
Expand Up @@ -8,24 +8,25 @@

module Algebra.Module.Morphism.Construct.Composition where

open import Algebra.Bundles
open import Algebra.Module.Bundles
open import Algebra.Module.Bundles.Raw
open import Algebra.Module.Morphism.Structures
open import Algebra.Morphism.Construct.Composition
open import Function.Base using (_∘_)
import Function.Construct.Composition as Func
open import Level using (Level)
open import Relation.Binary.Definitions using (Transitive)

private
variable
r ℓr s ℓs m₁ ℓm₁ m₂ ℓm₂ m₃ ℓm₃ : Level
r s m₁ ℓm₁ m₂ ℓm₂ m₃ ℓm₃ : Level

module _
{semiring : Semiring r ℓr}
{M₁ : LeftSemimodule semiring m₁ ℓm₁}
{M₂ : LeftSemimodule semiring m₂ ℓm₂}
{M₃ : LeftSemimodule semiring m₃ ℓm₃}
(open LeftSemimodule)
{R : Set r}
{M₁ : RawLeftSemimodule R m₁ ℓm₁}
{M₂ : RawLeftSemimodule R m₂ ℓm₂}
{M₃ : RawLeftSemimodule R m₃ ℓm₃}
(open RawLeftSemimodule)
(≈ᴹ₃-trans : Transitive (_≈ᴹ_ M₃))
{f : Carrierᴹ M₁ → Carrierᴹ M₂}
{g : Carrierᴹ M₂ → Carrierᴹ M₃}
where
Expand All @@ -34,8 +35,8 @@ module _
IsLeftSemimoduleHomomorphism M₂ M₃ g →
IsLeftSemimoduleHomomorphism M₁ M₃ (g ∘ f)
isLeftSemimoduleHomomorphism f-homo g-homo = record
{ +ᴹ-isMonoidHomomorphism = isMonoidHomomorphism (≈ᴹ-trans M₃) F.+ᴹ-isMonoidHomomorphism G.+ᴹ-isMonoidHomomorphism
; *ₗ-homo = λ r x → ≈ᴹ-trans M₃ (G.⟦⟧-cong (F.*ₗ-homo r x)) (G.*ₗ-homo r (f x))
{ +ᴹ-isMonoidHomomorphism = isMonoidHomomorphism ≈ᴹ₃-trans F.+ᴹ-isMonoidHomomorphism G.+ᴹ-isMonoidHomomorphism
; *ₗ-homo = λ r x → ≈ᴹ-trans (G.⟦⟧-cong (F.*ₗ-homo r x)) (G.*ₗ-homo r (f x))
} where module F = IsLeftSemimoduleHomomorphism f-homo; module G = IsLeftSemimoduleHomomorphism g-homo

isLeftSemimoduleMonomorphism : IsLeftSemimoduleMonomorphism M₁ M₂ f →
Expand All @@ -55,11 +56,12 @@ module _
} where module F = IsLeftSemimoduleIsomorphism f-iso; module G = IsLeftSemimoduleIsomorphism g-iso

module _
{ring : Ring r ℓr}
{M₁ : LeftModule ring m₁ ℓm₁}
{M₂ : LeftModule ring m₂ ℓm₂}
{M₃ : LeftModule ring m₃ ℓm₃}
(open LeftModule)
{R : Set r}
{M₁ : RawLeftModule R m₁ ℓm₁}
{M₂ : RawLeftModule R m₂ ℓm₂}
{M₃ : RawLeftModule R m₃ ℓm₃}
(open RawLeftModule)
(≈ᴹ₃-trans : Transitive (_≈ᴹ_ M₃))
{f : Carrierᴹ M₁ → Carrierᴹ M₂}
{g : Carrierᴹ M₂ → Carrierᴹ M₃}
where
Expand All @@ -68,8 +70,8 @@ module _
IsLeftModuleHomomorphism M₂ M₃ g →
IsLeftModuleHomomorphism M₁ M₃ (g ∘ f)
isLeftModuleHomomorphism f-homo g-homo = record
{ +ᴹ-isGroupHomomorphism = isGroupHomomorphism (≈ᴹ-trans M₃) F.+ᴹ-isGroupHomomorphism G.+ᴹ-isGroupHomomorphism
; *ₗ-homo = λ r x → ≈ᴹ-trans M₃ (G.⟦⟧-cong (F.*ₗ-homo r x)) (G.*ₗ-homo r (f x))
{ +ᴹ-isGroupHomomorphism = isGroupHomomorphism ≈ᴹ₃-trans F.+ᴹ-isGroupHomomorphism G.+ᴹ-isGroupHomomorphism
; *ₗ-homo = λ r x → ≈ᴹ-trans (G.⟦⟧-cong (F.*ₗ-homo r x)) (G.*ₗ-homo r (f x))
} where module F = IsLeftModuleHomomorphism f-homo; module G = IsLeftModuleHomomorphism g-homo

isLeftModuleMonomorphism : IsLeftModuleMonomorphism M₁ M₂ f →
Expand All @@ -89,11 +91,12 @@ module _
} where module F = IsLeftModuleIsomorphism f-iso; module G = IsLeftModuleIsomorphism g-iso

module _
{semiring : Semiring r ℓr}
{M₁ : RightSemimodule semiring m₁ ℓm₁}
{M₂ : RightSemimodule semiring m₂ ℓm₂}
{M₃ : RightSemimodule semiring m₃ ℓm₃}
(open RightSemimodule)
{R : Set r}
{M₁ : RawRightSemimodule R m₁ ℓm₁}
{M₂ : RawRightSemimodule R m₂ ℓm₂}
{M₃ : RawRightSemimodule R m₃ ℓm₃}
(open RawRightSemimodule)
(≈ᴹ₃-trans : Transitive (_≈ᴹ_ M₃))
{f : Carrierᴹ M₁ → Carrierᴹ M₂}
{g : Carrierᴹ M₂ → Carrierᴹ M₃}
where
Expand All @@ -102,8 +105,8 @@ module _
IsRightSemimoduleHomomorphism M₂ M₃ g →
IsRightSemimoduleHomomorphism M₁ M₃ (g ∘ f)
isRightSemimoduleHomomorphism f-homo g-homo = record
{ +ᴹ-isMonoidHomomorphism = isMonoidHomomorphism (≈ᴹ-trans M₃) F.+ᴹ-isMonoidHomomorphism G.+ᴹ-isMonoidHomomorphism
; *ᵣ-homo = λ r x → ≈ᴹ-trans M₃ (G.⟦⟧-cong (F.*ᵣ-homo r x)) (G.*ᵣ-homo r (f x))
{ +ᴹ-isMonoidHomomorphism = isMonoidHomomorphism ≈ᴹ₃-trans F.+ᴹ-isMonoidHomomorphism G.+ᴹ-isMonoidHomomorphism
; *ᵣ-homo = λ r x → ≈ᴹ-trans (G.⟦⟧-cong (F.*ᵣ-homo r x)) (G.*ᵣ-homo r (f x))
} where module F = IsRightSemimoduleHomomorphism f-homo; module G = IsRightSemimoduleHomomorphism g-homo

isRightSemimoduleMonomorphism : IsRightSemimoduleMonomorphism M₁ M₂ f →
Expand All @@ -123,11 +126,12 @@ module _
} where module F = IsRightSemimoduleIsomorphism f-iso; module G = IsRightSemimoduleIsomorphism g-iso

module _
{ring : Ring r ℓr}
{M₁ : RightModule ring m₁ ℓm₁}
{M₂ : RightModule ring m₂ ℓm₂}
{M₃ : RightModule ring m₃ ℓm₃}
(open RightModule)
{R : Set r}
{M₁ : RawRightModule R m₁ ℓm₁}
{M₂ : RawRightModule R m₂ ℓm₂}
{M₃ : RawRightModule R m₃ ℓm₃}
(open RawRightModule)
(≈ᴹ₃-trans : Transitive (_≈ᴹ_ M₃))
{f : Carrierᴹ M₁ → Carrierᴹ M₂}
{g : Carrierᴹ M₂ → Carrierᴹ M₃}
where
Expand All @@ -136,8 +140,8 @@ module _
IsRightModuleHomomorphism M₂ M₃ g →
IsRightModuleHomomorphism M₁ M₃ (g ∘ f)
isRightModuleHomomorphism f-homo g-homo = record
{ +ᴹ-isGroupHomomorphism = isGroupHomomorphism (≈ᴹ-trans M₃) F.+ᴹ-isGroupHomomorphism G.+ᴹ-isGroupHomomorphism
; *ᵣ-homo = λ r x → ≈ᴹ-trans M₃ (G.⟦⟧-cong (F.*ᵣ-homo r x)) (G.*ᵣ-homo r (f x))
{ +ᴹ-isGroupHomomorphism = isGroupHomomorphism ≈ᴹ₃-trans F.+ᴹ-isGroupHomomorphism G.+ᴹ-isGroupHomomorphism
; *ᵣ-homo = λ r x → ≈ᴹ-trans (G.⟦⟧-cong (F.*ᵣ-homo r x)) (G.*ᵣ-homo r (f x))
} where module F = IsRightModuleHomomorphism f-homo; module G = IsRightModuleHomomorphism g-homo

isRightModuleMonomorphism : IsRightModuleMonomorphism M₁ M₂ f →
Expand All @@ -157,12 +161,13 @@ module _
} where module F = IsRightModuleIsomorphism f-iso; module G = IsRightModuleIsomorphism g-iso

module _
{R-semiring : Semiring r ℓr}
{S-semiring : Semiring s ℓs}
{M₁ : Bisemimodule R-semiring S-semiring m₁ ℓm₁}
{M₂ : Bisemimodule R-semiring S-semiring m₂ ℓm₂}
{M₃ : Bisemimodule R-semiring S-semiring m₃ ℓm₃}
(open Bisemimodule)
{R : Set r}
{S : Set s}
{M₁ : RawBisemimodule R S m₁ ℓm₁}
{M₂ : RawBisemimodule R S m₂ ℓm₂}
{M₃ : RawBisemimodule R S m₃ ℓm₃}
(open RawBisemimodule)
(≈ᴹ₃-trans : Transitive (_≈ᴹ_ M₃))
{f : Carrierᴹ M₁ → Carrierᴹ M₂}
{g : Carrierᴹ M₂ → Carrierᴹ M₃}
where
Expand All @@ -171,9 +176,9 @@ module _
IsBisemimoduleHomomorphism M₂ M₃ g →
IsBisemimoduleHomomorphism M₁ M₃ (g ∘ f)
isBisemimoduleHomomorphism f-homo g-homo = record
{ +ᴹ-isMonoidHomomorphism = isMonoidHomomorphism (≈ᴹ-trans M₃) F.+ᴹ-isMonoidHomomorphism G.+ᴹ-isMonoidHomomorphism
; *ₗ-homo = λ r x → ≈ᴹ-trans M₃ (G.⟦⟧-cong (F.*ₗ-homo r x)) (G.*ₗ-homo r (f x))
; *ᵣ-homo = λ r x → ≈ᴹ-trans M₃ (G.⟦⟧-cong (F.*ᵣ-homo r x)) (G.*ᵣ-homo r (f x))
{ +ᴹ-isMonoidHomomorphism = isMonoidHomomorphism ≈ᴹ₃-trans F.+ᴹ-isMonoidHomomorphism G.+ᴹ-isMonoidHomomorphism
; *ₗ-homo = λ r x → ≈ᴹ-trans (G.⟦⟧-cong (F.*ₗ-homo r x)) (G.*ₗ-homo r (f x))
; *ᵣ-homo = λ r x → ≈ᴹ-trans (G.⟦⟧-cong (F.*ᵣ-homo r x)) (G.*ᵣ-homo r (f x))
} where module F = IsBisemimoduleHomomorphism f-homo; module G = IsBisemimoduleHomomorphism g-homo

isBisemimoduleMonomorphism : IsBisemimoduleMonomorphism M₁ M₂ f →
Expand All @@ -193,12 +198,13 @@ module _
} where module F = IsBisemimoduleIsomorphism f-iso; module G = IsBisemimoduleIsomorphism g-iso

module _
{R-ring : Ring r ℓr}
{S-ring : Ring s ℓs}
{M₁ : Bimodule R-ring S-ring m₁ ℓm₁}
{M₂ : Bimodule R-ring S-ring m₂ ℓm₂}
{M₃ : Bimodule R-ring S-ring m₃ ℓm₃}
(open Bimodule)
{R : Set r}
{S : Set s}
{M₁ : RawBimodule R S m₁ ℓm₁}
{M₂ : RawBimodule R S m₂ ℓm₂}
{M₃ : RawBimodule R S m₃ ℓm₃}
(open RawBimodule)
(≈ᴹ₃-trans : Transitive (_≈ᴹ_ M₃))
{f : Carrierᴹ M₁ → Carrierᴹ M₂}
{g : Carrierᴹ M₂ → Carrierᴹ M₃}
where
Expand All @@ -207,9 +213,9 @@ module _
IsBimoduleHomomorphism M₂ M₃ g →
IsBimoduleHomomorphism M₁ M₃ (g ∘ f)
isBimoduleHomomorphism f-homo g-homo = record
{ +ᴹ-isGroupHomomorphism = isGroupHomomorphism (≈ᴹ-trans M₃) F.+ᴹ-isGroupHomomorphism G.+ᴹ-isGroupHomomorphism
; *ₗ-homo = λ r x → ≈ᴹ-trans M₃ (G.⟦⟧-cong (F.*ₗ-homo r x)) (G.*ₗ-homo r (f x))
; *ᵣ-homo = λ r x → ≈ᴹ-trans M₃ (G.⟦⟧-cong (F.*ᵣ-homo r x)) (G.*ᵣ-homo r (f x))
{ +ᴹ-isGroupHomomorphism = isGroupHomomorphism ≈ᴹ₃-trans F.+ᴹ-isGroupHomomorphism G.+ᴹ-isGroupHomomorphism
; *ₗ-homo = λ r x → ≈ᴹ-trans (G.⟦⟧-cong (F.*ₗ-homo r x)) (G.*ₗ-homo r (f x))
; *ᵣ-homo = λ r x → ≈ᴹ-trans (G.⟦⟧-cong (F.*ᵣ-homo r x)) (G.*ᵣ-homo r (f x))
} where module F = IsBimoduleHomomorphism f-homo; module G = IsBimoduleHomomorphism g-homo

isBimoduleMonomorphism : IsBimoduleMonomorphism M₁ M₂ f →
Expand All @@ -229,11 +235,12 @@ module _
} where module F = IsBimoduleIsomorphism f-iso; module G = IsBimoduleIsomorphism g-iso

module _
{commutativeSemiring : CommutativeSemiring r ℓr}
{M₁ : Semimodule commutativeSemiring m₁ ℓm₁}
{M₂ : Semimodule commutativeSemiring m₂ ℓm₂}
{M₃ : Semimodule commutativeSemiring m₃ ℓm₃}
(open Semimodule)
{R : Set r}
{M₁ : RawSemimodule R m₁ ℓm₁}
{M₂ : RawSemimodule R m₂ ℓm₂}
{M₃ : RawSemimodule R m₃ ℓm₃}
(open RawSemimodule)
(≈ᴹ₃-trans : Transitive (_≈ᴹ_ M₃))
{f : Carrierᴹ M₁ → Carrierᴹ M₂}
{g : Carrierᴹ M₂ → Carrierᴹ M₃}
where
Expand All @@ -242,7 +249,7 @@ module _
IsSemimoduleHomomorphism M₂ M₃ g →
IsSemimoduleHomomorphism M₁ M₃ (g ∘ f)
isSemimoduleHomomorphism f-homo g-homo = record
{ isBisemimoduleHomomorphism = isBisemimoduleHomomorphism F.isBisemimoduleHomomorphism G.isBisemimoduleHomomorphism
{ isBisemimoduleHomomorphism = isBisemimoduleHomomorphism ≈ᴹ₃-trans F.isBisemimoduleHomomorphism G.isBisemimoduleHomomorphism
} where module F = IsSemimoduleHomomorphism f-homo; module G = IsSemimoduleHomomorphism g-homo

isSemimoduleMonomorphism : IsSemimoduleMonomorphism M₁ M₂ f →
Expand All @@ -262,11 +269,12 @@ module _
} where module F = IsSemimoduleIsomorphism f-iso; module G = IsSemimoduleIsomorphism g-iso

module _
{commutativeRing : CommutativeRing r ℓr}
{M₁ : Module commutativeRing m₁ ℓm₁}
{M₂ : Module commutativeRing m₂ ℓm₂}
{M₃ : Module commutativeRing m₃ ℓm₃}
(open Module)
{R : Set r}
{M₁ : RawModule R m₁ ℓm₁}
{M₂ : RawModule R m₂ ℓm₂}
{M₃ : RawModule R m₃ ℓm₃}
(open RawModule)
(≈ᴹ₃-trans : Transitive (_≈ᴹ_ M₃))
{f : Carrierᴹ M₁ → Carrierᴹ M₂}
{g : Carrierᴹ M₂ → Carrierᴹ M₃}
where
Expand All @@ -275,7 +283,7 @@ module _
IsModuleHomomorphism M₂ M₃ g →
IsModuleHomomorphism M₁ M₃ (g ∘ f)
isModuleHomomorphism f-homo g-homo = record
{ isBimoduleHomomorphism = isBimoduleHomomorphism F.isBimoduleHomomorphism G.isBimoduleHomomorphism
{ isBimoduleHomomorphism = isBimoduleHomomorphism ≈ᴹ₃-trans F.isBimoduleHomomorphism G.isBimoduleHomomorphism
} where module F = IsModuleHomomorphism f-homo; module G = IsModuleHomomorphism g-homo

isModuleMonomorphism : IsModuleMonomorphism M₁ M₂ f →
Expand Down
34 changes: 13 additions & 21 deletions src/Algebra/Module/Morphism/Construct/Identity.agda
Original file line number Diff line number Diff line change
Expand Up @@ -8,8 +8,7 @@

module Algebra.Module.Morphism.Construct.Identity where

open import Algebra.Bundles
open import Algebra.Module.Bundles
open import Algebra.Module.Bundles.Raw
open import Algebra.Module.Morphism.Structures
using ( module LeftSemimoduleMorphisms
; module LeftModuleMorphisms
Expand All @@ -25,13 +24,13 @@ open import Data.Product.Base using (_,_)
open import Function.Base using (id)
import Function.Construct.Identity as Id
open import Level using (Level)
open import Relation.Binary.Definitions using (Reflexive)

private
variable
r ℓr s ℓs m ℓm : Level
r s m ℓm : Level

module _ {semiring : Semiring r ℓr} (M : LeftSemimodule semiring m ℓm) where
open LeftSemimodule M using (≈ᴹ-refl)
module _ {R : Set r} (M : RawLeftSemimodule R m ℓm) (open RawLeftSemimodule M) (≈ᴹ-refl : Reflexive _≈ᴹ_) where
open LeftSemimoduleMorphisms M M

isLeftSemimoduleHomomorphism : IsLeftSemimoduleHomomorphism id
Expand All @@ -52,8 +51,7 @@ module _ {semiring : Semiring r ℓr} (M : LeftSemimodule semiring m ℓm) where
; surjective = Id.surjective _
}

module _ {ring : Ring r ℓr} (M : LeftModule ring m ℓm) where
open LeftModule M using (≈ᴹ-refl)
module _ {R : Set r} (M : RawLeftModule R m ℓm) (open RawLeftModule M) (≈ᴹ-refl : Reflexive _≈ᴹ_) where
open LeftModuleMorphisms M M

isLeftModuleHomomorphism : IsLeftModuleHomomorphism id
Expand All @@ -74,8 +72,7 @@ module _ {ring : Ring r ℓr} (M : LeftModule ring m ℓm) where
; surjective = Id.surjective _
}

module _ {semiring : Semiring r ℓr} (M : RightSemimodule semiring m ℓm) where
open RightSemimodule M using (≈ᴹ-refl)
module _ {R : Set r} (M : RawRightSemimodule R m ℓm) (open RawRightSemimodule M) (≈ᴹ-refl : Reflexive _≈ᴹ_) where
open RightSemimoduleMorphisms M M

isRightSemimoduleHomomorphism : IsRightSemimoduleHomomorphism id
Expand All @@ -96,8 +93,7 @@ module _ {semiring : Semiring r ℓr} (M : RightSemimodule semiring m ℓm) wher
; surjective = Id.surjective _
}

module _ {ring : Ring r ℓr} (M : RightModule ring m ℓm) where
open RightModule M using (≈ᴹ-refl)
module _ {R : Set r} (M : RawRightModule R m ℓm) (open RawRightModule M) (≈ᴹ-refl : Reflexive _≈ᴹ_) where
open RightModuleMorphisms M M

isRightModuleHomomorphism : IsRightModuleHomomorphism id
Expand All @@ -118,8 +114,7 @@ module _ {ring : Ring r ℓr} (M : RightModule ring m ℓm) where
; surjective = Id.surjective _
}

module _ {R-semiring : Semiring r ℓr} {S-semiring : Semiring s ℓs} (M : Bisemimodule R-semiring S-semiring m ℓm) where
open Bisemimodule M using (≈ᴹ-refl)
module _ {R : Set r} {S : Set s} (M : RawBisemimodule R S m ℓm) (open RawBisemimodule M) (≈ᴹ-refl : Reflexive _≈ᴹ_) where
open BisemimoduleMorphisms M M

isBisemimoduleHomomorphism : IsBisemimoduleHomomorphism id
Expand All @@ -141,8 +136,7 @@ module _ {R-semiring : Semiring r ℓr} {S-semiring : Semiring s ℓs} (M : Bise
; surjective = Id.surjective _
}

module _ {R-ring : Ring r ℓr} {S-ring : Ring r ℓr} (M : Bimodule R-ring S-ring m ℓm) where
open Bimodule M using (≈ᴹ-refl)
module _ {R : Set r} {S : Set s} (M : RawBimodule R S m ℓm) (open RawBimodule M) (≈ᴹ-refl : Reflexive _≈ᴹ_) where
open BimoduleMorphisms M M

isBimoduleHomomorphism : IsBimoduleHomomorphism id
Expand All @@ -164,13 +158,12 @@ module _ {R-ring : Ring r ℓr} {S-ring : Ring r ℓr} (M : Bimodule R-ring S-ri
; surjective = Id.surjective _
}

module _ {commutativeSemiring : CommutativeSemiring r ℓr} (M : Semimodule commutativeSemiring m ℓm) where
open Semimodule M using (≈ᴹ-refl)
module _ {R : Set r} (M : RawSemimodule R m ℓm) (open RawSemimodule M) (≈ᴹ-refl : Reflexive _≈ᴹ_) where
open SemimoduleMorphisms M M

isSemimoduleHomomorphism : IsSemimoduleHomomorphism id
isSemimoduleHomomorphism = record
{ isBisemimoduleHomomorphism = isBisemimoduleHomomorphism _
{ isBisemimoduleHomomorphism = isBisemimoduleHomomorphism _ ≈ᴹ-refl
}

isSemimoduleMonomorphism : IsSemimoduleMonomorphism id
Expand All @@ -185,13 +178,12 @@ module _ {commutativeSemiring : CommutativeSemiring r ℓr} (M : Semimodule comm
; surjective = Id.surjective _
}

module _ {commutativeRing : CommutativeRing r ℓr} (M : Module commutativeRing m ℓm) where
open Module M using (≈ᴹ-refl)
module _ {R : Set r} (M : RawModule R m ℓm) (open RawModule M) (≈ᴹ-refl : Reflexive _≈ᴹ_) where
open ModuleMorphisms M M

isModuleHomomorphism : IsModuleHomomorphism id
isModuleHomomorphism = record
{ isBimoduleHomomorphism = isBimoduleHomomorphism _
{ isBimoduleHomomorphism = isBimoduleHomomorphism _ ≈ᴹ-refl
}

isModuleMonomorphism : IsModuleMonomorphism id
Expand Down
6 changes: 3 additions & 3 deletions src/Algebra/Module/Morphism/ModuleHomomorphism.agda
Original file line number Diff line number Diff line change
Expand Up @@ -17,10 +17,10 @@ module Algebra.Module.Morphism.ModuleHomomorphism
{r ℓr m ℓm : Level}
{ring : CommutativeRing r ℓr}
(modA modB : Module ring m ℓm)
(open Module modA using () renaming (Carrierᴹ to A))
(open Module modB using () renaming (Carrierᴹ to B))
(open Module modA using () renaming (Carrierᴹ to A; rawModule to rawModA))
(open Module modB using () renaming (Carrierᴹ to B; rawModule to rawModB))
{f : A → B}
(open MorphismStructures.ModuleMorphisms modA modB)
(open MorphismStructures.ModuleMorphisms rawModA rawModB)
(isModuleHomomorphism : IsModuleHomomorphism f)
where

Expand Down
Loading