Skip to content
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 9 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -118,12 +118,21 @@ Additions to existing modules
```agda
binomial-expansion : Associative _∙_ → _◦_ DistributesOver _∙_ →
∀ w x y z → ((w ∙ x) ◦ (y ∙ z)) ≡ ((((w ◦ y) ∙ (w ◦ z)) ∙ (x ◦ y)) ∙ (x ◦ z))
identity⇒central : Identity e _∙_ → Central _∙_ e
zero⇒central : Zero e _∙_ → Central _∙_ e
```

* In `Algebra.Consequences.Setoid`:
```agda
binomial-expansion : Congruent₂ _∙_ → Associative _∙_ → _◦_ DistributesOver _∙_ →
∀ w x y z → ((w ∙ x) ◦ (y ∙ z)) ≈ ((((w ◦ y) ∙ (w ◦ z)) ∙ (x ◦ y)) ∙ (x ◦ z))
identity⇒central : Identity e _∙_ → Central _∙_ e
zero⇒central : Zero e _∙_ → Central _∙_ e
```

* In `Algebra.Definitions`:
```agda
Central : Op₂ A → A → Set _
```

* In `Algebra.Lattice.Properties.BooleanAlgebra.XorRing`:
Expand Down
9 changes: 9 additions & 0 deletions src/Algebra/Consequences/Setoid.agda
Original file line number Diff line number Diff line change
Expand Up @@ -184,6 +184,15 @@ module _ {_∙_ : Op₂ A} (comm : Commutative _∙_) {e : A} where
x ∙ z ≈⟨ comm x z ⟩
z ∙ x ∎

module _ {_∙_ : Op₂ A} {e : A} where

identity⇒central : Identity e _∙_ → Central _∙_ e
identity⇒central (identityˡ , identityʳ) x = trans (identityˡ x) (sym (identityʳ x))

zero⇒central : Zero e _∙_ → Central _∙_ e
zero⇒central (zeroˡ , zeroʳ) x = trans (zeroˡ x) (sym (zeroʳ x))


------------------------------------------------------------------------
-- Group-like structures

Expand Down
3 changes: 3 additions & 0 deletions src/Algebra/Definitions.agda
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,9 @@ Associative _∙_ = ∀ x y z → ((x ∙ y) ∙ z) ≈ (x ∙ (y ∙ z))
Commutative : Op₂ A → Set _
Commutative _∙_ = ∀ x y → (x ∙ y) ≈ (y ∙ x)

Central : Op₂ A → A → Set _
Central _∙_ x = ∀ y → (x ∙ y) ≈ (y ∙ x)

LeftIdentity : A → Op₂ A → Set _
LeftIdentity e _∙_ = ∀ x → (e ∙ x) ≈ x

Expand Down