-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDancingPRMstar.cpp
1365 lines (1127 loc) · 49.5 KB
/
DancingPRMstar.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*********************************************************************
* Software License Agreement (BSD License)
*
* Copyright (c) 2013, Willow Garage
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/
/* Modified by : A.I Dyk(Donghyuk Kim)*/
#include <omp.h>
#include "ompl/geometric/planners/prm/DancingPRMstar.h"
#include "ompl/base/objectives/PathLengthOptimizationObjective.h"
#include "ompl/base/goals/GoalSampleableRegion.h"
#include "ompl/util/GeometricEquations.h"
#include "ompl/geometric/planners/prm/ConnectionStrategy.h"
#include "ompl/tools/config/SelfConfig.h"
#include "ompl/tools/debug/Profiler.h" // To enable and disable Profiling, please refer to the header file.
#include "ompl/base/spaces/RealVectorStateSpace.h"
#include <boost/lambda/bind.hpp>
#include <boost/graph/astar_search.hpp>
#include <boost/graph/lookup_edge.hpp>
#include <boost/foreach.hpp>
#include <fstream>
#include <queue>
#include <stack>
#include <utility>
#include <numeric>
#define foreach BOOST_FOREACH
#define PI 3.14159265358979
namespace ompl {
namespace magic {
/** \brief The number of nearest neighbors to consider by
default in the construction of the PRM roadmap */
static const unsigned int DEFAULT_NEAREST_NEIGHBORS_LAZY = 5;
/** \brief When optimizing solutions with lazy planners, this is the minimum
number of path segments to add before attempting a new optimized solution
extraction */
static const unsigned int MIN_ADDED_SEGMENTS_FOR_LAZY_OPTIMIZATION = 5;
}
}
ompl::geometric::DancingPRMstar::DistanceField::DistanceField(const Vertex &from, const Vertex &to,
DancingPRMstar *parent, double resolution)
: parent_(parent), resolution_(resolution) {
base::State *state_from = parent->stateProperty_[from], *state_to = parent->stateProperty_[to];
double cardDbl = static_cast<double>(parent->nn_->size() + 1u);
double r_nn = std::min(parent_->maxDistance_, parent_->r_rrgConstant_ * std::pow(log(cardDbl) / cardDbl,
1 / static_cast<double>(parent_->si_->getStateDimension())));
std::vector<Vertex> locals;
locals.push_back(from);
locals.push_back(to);
for (auto local = locals.begin(); local != locals.end(); ++local) {
std::vector<DancingPRMstar::type_neighbor> &neighbors = parent->neighborProperty_[*local];
for (uint i = 0; i < neighbors.size();) {
if (neighbors[i].second > parent->max_length_optimized_
|| neighbors[i].second > 2 * r_nn) {
std::swap(neighbors[i], neighbors.back());
neighbors.pop_back();
continue;
}
neighbor_list_.insert(neighbors[i].first);
i++;
}
}
neighbor_list_.insert(from);
neighbor_list_.insert(to);
}
ompl::geometric::DancingPRMstar::DistanceField::~DistanceField() {
hash_map_.clear();
}
ompl::geometric::DancingPRMstar::DistanceFieldNode
ompl::geometric::DancingPRMstar::DistanceField::computeDistance(const Eigen::VectorXd st) {
base::State *state_from = parent_->si_->allocState();
std::vector<double> v_from(st.data(), st.data() + st.size());
parent_->si_->getStateSpace()->copyFromReals(state_from, v_from);
bool isInside = false;
double closest_dist = std::numeric_limits<double>::infinity();
Vertex closest_neighbor = nullptr;
Eigen::VectorXd closest_gradient_vector(Eigen::VectorXd::Zero(v_from.size()));
Eigen::VectorXd gradient_vector(Eigen::VectorXd::Zero(v_from.size()));
for (auto it = neighbor_list_.begin(); it != neighbor_list_.end(); ++it) {
Vertex neighbor = *it;
double dist_to_neighbor = parent_->distanceFunction(
parent_->stateProperty_[neighbor], state_from);
double compensated_distance = dist_to_neighbor - parent_->compensatedRadius(neighbor);
isInside |= (dist_to_neighbor < 0.0);
if (isInside) break;
if (closest_dist > compensated_distance) {
std::vector<double> v_to;
parent_->si_->getStateSpace()->copyToReals(v_to, parent_->stateProperty_[neighbor]);
for (uint i = 0; i < v_from.size(); i++) {
gradient_vector(i) = (v_to[i] - v_from[i]) / dist_to_neighbor;
}
closest_dist = compensated_distance;
closest_neighbor = neighbor;
}
}
parent_->si_->freeState(state_from);
if (isInside || closest_neighbor == nullptr) {
DistanceFieldNode dfn(0.0, Eigen::VectorXd());
return dfn;
} else {
std::vector<double> v_to;
parent_->si_->getStateSpace()->copyToReals(v_to, parent_->stateProperty_[closest_neighbor]);
for (uint i = 0; i < v_from.size(); i++) {
gradient_vector(i) = (v_to[i] - v_from[i]) / (closest_dist + parent_->compensatedRadius((closest_neighbor)));
}
DistanceFieldNode dfn(closest_dist + 0.01, gradient_vector);
return dfn;
}
}
ompl::geometric::DancingPRMstar::DancingPRMstar(const base::SpaceInformationPtr &si,
bool starStrategy) :
base::Planner(si, "DancingPRMstar"),
starStrategy_(starStrategy),
userSetConnectionStrategy_(false),
maxDistance_(0.0),
indexProperty_(boost::get(boost::vertex_index_t(), g_)),
stateProperty_(boost::get(vertex_state_t(), g_)),
radiusProperty_(boost::get(vertex_radius_t(), g_)),
witnessProperty_(boost::get(vertex_witness_t(), g_)),
costProperty_(boost::get(vertex_cost_t(), g_)),
childrenProperty_(boost::get(vertex_children_t(), g_)),
predecessorProperty_(boost::get(boost::vertex_predecessor_t(), g_)),
colorProperty_(boost::get(boost::vertex_color_t(), g_)),
weightProperty_(boost::get(boost::edge_weight_t(), g_)),
vertexValidityProperty_(boost::get(vertex_flags_t(), g_)),
edgeValidityProperty_(boost::get(edge_flags_t(), g_)),
bestCost_(std::numeric_limits<double>::quiet_NaN()),
iterations_(0),
increaseIterations_(0),
dt_(1.0),
number_of_attempt_opt_(0),
number_of_success_opt_(0),
BisectionCC_(true),
CFreeSpaceApprox_(true),
CObstacleApprox_(true),
BiInheritance_(true),
DancingOpt_(false),
TestOpt_(false),
number_of_configuration_(10u),
rewireFactor_(1.1),
max_distance_field_value_(0.1),
gain_(20.0),
compensationFactor_(0.0),
projectionFactor_(0.0) {
specs_.recognizedGoal = base::GOAL_SAMPLEABLE_REGION;
specs_.approximateSolutions = false;
specs_.optimizingPaths = true;
Planner::declareParam<bool>("BisectionCC", this,
&DancingPRMstar::setBisectionCC, std::string("."));
Planner::declareParam<bool>("CFreeSpaceApprox", this,
&DancingPRMstar::setCFreeSpaceApprox, std::string("."));
Planner::declareParam<bool>("CObstacleApprox", this,
&DancingPRMstar::setCObstacleApprox, std::string("."));
Planner::declareParam<bool>("BiInheritance", this,
&DancingPRMstar::setBiInheritance, std::string("."));
Planner::declareParam<bool>("DancingOpt", this,
&DancingPRMstar::setDancingOpt, std::string("."));
Planner::declareParam<bool>("TestOpt", this,
&DancingPRMstar::setTestOpt, std::string("."));
Planner::declareParam<unsigned int>("LengthOfOptTrajectory", this,
&DancingPRMstar::setLengthOfOptTrajectory, std::string("."));
Planner::declareParam<double>("RewireFactor", this,
&DancingPRMstar::setRewireFactor, std::string("."));
Planner::declareParam<double>("MaxDistanceFieldValue", this,
&DancingPRMstar::setMaxDistanceFieldValue, std::string("."));
Planner::declareParam<double>("MaxLengthOptimized", this,
&DancingPRMstar::setMaxLengthOptimized, std::string("."));
Planner::declareParam<double>("MaxMagnitudeOfOptimizedTrajectory", this,
&DancingPRMstar::setMaxMagnitudeOfOptimizedTrajectory, std::string("."));
Planner::declareParam<double>("Gain", this,
&DancingPRMstar::setGain, std::string("."));
Planner::declareParam<double>("CompensationFactor", this,
&DancingPRMstar::setCompensationFactor, std::string("."));
Planner::declareParam<double>("ProjectionFactor", this,
&DancingPRMstar::setProjectionFactor, std::string("."));
Planner::declareParam<double>("epsilon", this,
&DancingPRMstar::setEpsilon, std::string("."));
Planner::declareParam<unsigned int>("MaxOptimizationIteration", this,
&DancingPRMstar::setMaxOptimizationIteration, std::string("."));
if (!starStrategy_) {
Planner::declareParam<unsigned int>("max_nearest_neighbors", this,
&DancingPRMstar::setMaxNearestNeighbors, std::string("8:1000"));
}
addPlannerProgressProperty("iterations INTEGER",
boost::bind(&DancingPRMstar::getIterationCount, this));
addPlannerProgressProperty("best cost REAL",
boost::bind(&DancingPRMstar::getBestCost, this));
addPlannerProgressProperty("milestone count INTEGER",
boost::bind(&DancingPRMstar::getMilestoneCountString, this));
addPlannerProgressProperty("edge count INTEGER",
boost::bind(&DancingPRMstar::getEdgeCountString, this));
}
ompl::geometric::DancingPRMstar::~DancingPRMstar() {
}
void ompl::geometric::DancingPRMstar::setup() {
Planner::setup();
tools::SelfConfig sc(si_, getName());
sc.configurePlannerRange(maxDistance_);
if (!nn_) {
nn_.reset(tools::SelfConfig::getDefaultNearestNeighbors<Vertex>(this));
// nn_.reset(new ompl::NearestNeighborsGNAT<Vertex>());
nn_->setDistanceFunction(boost::bind(&DancingPRMstar::distanceFunctionVertex, this, _1, _2));
}
if (!connectionStrategy_) {
if (starStrategy_) {
connectionStrategy_ = KStarStrategy<Vertex>(boost::bind(
&DancingPRMstar::milestoneCount, this), nn_, si_->getStateDimension());
} else {
connectionStrategy_ = KBoundedStrategy<Vertex>
(magic::DEFAULT_NEAREST_NEIGHBORS_LAZY, maxDistance_, nn_);
}
}
double dimDbl = static_cast<double>(si_->getStateDimension());
double prunedMeasure_ = si_->getSpaceMeasure();
k_rrgConstant_ = rewireFactor_ * boost::math::constants::e<double>() + (boost::math::constants::e<double>() /
(double)si_->getStateDimension());
// r_rrg > 2*(1+1/d)^(1/d)*(measure/ballvolume)^(1/d)
r_rrgConstant_ = rewireFactor_ * 2.0 * std::pow((1.0 + 1.0/dimDbl) * (prunedMeasure_ / unitNBallMeasure(si_->getStateDimension())), 1.0 / dimDbl);
OMPL_INFORM("r_rrgConstant_ : %lf", r_rrgConstant_);
// Setup optimization objective
//
// If no optimization objective was specified, then default to
// optimizing path length as computed by the distance() function
// in the state space.
if (pdef_) {
if (pdef_->hasOptimizationObjective()) {
opt_ = pdef_->getOptimizationObjective();
} else {
opt_.reset(new base::PathLengthOptimizationObjective(si_));
if (!starStrategy_) {
opt_->setCostThreshold(opt_->infiniteCost());
}
}
} else {
OMPL_INFORM("%s: problem definition is not set, deferring setup completion...",
getName().c_str());
setup_ = false;
}
sampler_ = si_->allocStateSampler();
// Compensation Ratio
compensationRatioCache_.resize(1000001);
for (uint i = 1; i <= 1000000; i++) {
#ifdef COMPENSATION
compensationRatioCache_[i] = std::max(0.0, 1.0 - (compensationFactor_ * std::pow(log(i) / static_cast<double>(i),
1 / static_cast<double>(si_->getStateSpace()->getDimension()))));
#else
compensationRatioCache_[i] = compensationFactor_;
#endif
}
}
void ompl::geometric::DancingPRMstar::setRange(double distance) {
maxDistance_ = distance;
if (!userSetConnectionStrategy_) {
connectionStrategy_.clear();
}
if (isSetup()) {
setup();
}
}
void ompl::geometric::DancingPRMstar::setMaxNearestNeighbors(unsigned int k) {
if (starStrategy_) {
throw Exception("Cannot set the maximum nearest neighbors for " + getName());
}
if (!nn_) {
nn_.reset(tools::SelfConfig::getDefaultNearestNeighbors<Vertex>(this));
nn_->setDistanceFunction(boost::bind(&DancingPRMstar::distanceFunctionVertex, this, _1, _2));
}
if (!userSetConnectionStrategy_) {
connectionStrategy_.clear();
}
if (isSetup()) {
setup();
}
}
void ompl::geometric::DancingPRMstar::setProblemDefinition(
const base::ProblemDefinitionPtr &pdef) {
Planner::setProblemDefinition(pdef);
clearQuery();
}
void ompl::geometric::DancingPRMstar::clearQuery() {
startM_.clear();
goalM_.clear();
pis_.restart();
}
void ompl::geometric::DancingPRMstar::clear() {
Planner::clear();
freeMemory();
if (nn_) {
nn_->clear();
}
clearQuery();
iterations_ = 0;
bestCost_ = base::Cost(std::numeric_limits<double>::quiet_NaN());
}
void ompl::geometric::DancingPRMstar::freeMemory() {
foreach (Vertex v, boost::vertices(g_)) {
si_->freeState(stateProperty_[v]);
}
g_.clear();
}
// Add newly sampled vertex and its adjancency edges connected to neigh neighbors.
ompl::geometric::DancingPRMstar::Vertex ompl::geometric::DancingPRMstar::addMilestone(
base::State *state, bool isChecked) {
Vertex m = boost::add_vertex(g_);
stateProperty_[m] = state;
radiusProperty_[m] = std::numeric_limits<double>::infinity();
costProperty_[m] = std::numeric_limits<double>::infinity();
childrenProperty_[m] = new std::vector<Vertex>();
witnessProperty_[m] = nullptr;
predecessorProperty_[m] = nullptr;
colorProperty_[m] = 0;
vertexValidityProperty_[m] = (isChecked) ? VALIDITY_TRUE : VALIDITY_UNKNOWN;
// Which milestones will we attempt to connect to?
// const std::vector<Vertex> &neighbors = connectionStrategy_(m);
std::vector<Vertex> neighbors;
std::vector<double> neighbors_costs;
const unsigned int max_number_of_neighbors = std::ceil(k_rrgConstant_ * log(static_cast<double>(milestoneCount()) + 1u));
neighbors.reserve(max_number_of_neighbors);
neighbors_costs.reserve(max_number_of_neighbors);
ompl::tools::Profiler::Begin("Nearest Neighbor Search");
nn_->nearestK(m, max_number_of_neighbors, neighbors);
ompl::tools::Profiler::End("Nearest Neighbor Search");
ompl::tools::Profiler::Begin("Configuration-Free Space Approximation");
// Inherit witness from near neighbors.
foreach (Vertex n, neighbors) {
if (witnessProperty_[n] != nullptr) {
double dist = distanceFunction(witnessProperty_[n], stateProperty_[m]);
// No directional information for radiusProperty...
if (dist < radiusProperty_[m]) {
witnessProperty_[m] = witnessProperty_[n];
radiusProperty_[m] = dist;
}
}
}
ompl::tools::Profiler::End("Configuration-Free Space Approximation");
// Witness Propagation
foreach (Vertex n, neighbors) {
ompl::tools::Profiler::Begin("Configuration-Free Space Approximation");
// Symmetricity assumed here, can't use si_->distance here.
const double weight = distanceFunction(stateProperty_[n], stateProperty_[m]);
ompl::base::Cost cost_weight(weight);
const Graph::edge_property_type properties(cost_weight);
neighborProperty_[m].push_back(type_neighbor(n, weight));
neighborProperty_[n].push_back(type_neighbor(m, weight));
ompl::tools::Profiler::End("Configuration-Free Space Approximation");
const Edge &e = boost::add_edge(n, m, properties, g_).first;
edgeValidityProperty_[e] = VALIDITY_UNKNOWN;
edgeTrajectoryProperty_[e] = nullptr;
}
if (witnessProperty_[m] != nullptr) {
ompl::tools::Profiler::Begin("Configuration-Free Space Approximation");
foreach (Vertex n, neighbors) {
double dist = distanceFunction(witnessProperty_[m], stateProperty_[n]);
if (dist < radiusProperty_[n]) {
witnessProperty_[n] = witnessProperty_[m];
radiusProperty_[n] = dist;
}
}
ompl::tools::Profiler::End("Configuration-Free Space Approximation");
}
nn_->add(m);
return m;
}
ompl::base::PlannerStatus ompl::geometric::DancingPRMstar::solve(const
base::PlannerTerminationCondition &ptc) {
// Initial checkup for start/goal configurations.
checkValidity();
number_of_collision_checks_ = 0;
// Add the valid start states as milestones
while (const base::State *st = pis_.nextStart()) {
Vertex st_vert = addMilestone(si_->cloneState(st));
costProperty_[st_vert] = 0.0; // Initialize with 0 cost.
startM_.push_back(st_vert);
}
if (startM_.size() == 0) {
OMPL_ERROR("%s: There are no valid initial states!", getName().c_str());
return base::PlannerStatus::INVALID_START;
}
base::GoalSampleableRegion *goal = dynamic_cast<base::GoalSampleableRegion *>
(pdef_->getGoal().get());
if (!goal) {
OMPL_ERROR("%s: Unknown type of goal", getName().c_str());
return base::PlannerStatus::UNRECOGNIZED_GOAL_TYPE;
}
if (!goal->couldSample()) {
OMPL_ERROR("%s: Insufficient states in sampleable goal region",
getName().c_str());
return base::PlannerStatus::INVALID_GOAL;
}
// Ensure there is at least one valid goal state
if (goal->maxSampleCount() > goalM_.size() || goalM_.empty()) {
const base::State *st = goalM_.empty() ? pis_.nextGoal(ptc) : pis_.nextGoal();
if (st) {
goalM_.push_back(addMilestone(si_->cloneState(st)));
}
if (goalM_.empty()) {
OMPL_ERROR("%s: Unable to find any valid goal states", getName().c_str());
return base::PlannerStatus::INVALID_GOAL;
}
}
unsigned long int nrStartStates = boost::num_vertices(g_);
OMPL_INFORM("%s: Starting planning with %lu states already in datastructure",
getName().c_str(), nrStartStates);
bestCost_ = opt_->infiniteCost();
ompl::tools::Profiler::Clear();
ompl::tools::Profiler::Begin("Total");
base::State *workState = si_->allocState();
bool fullyOptimized = false;
bool someSolutionFound = false;
base::PathPtr bestSolution;
Vertex x_obs;
if (CObstacleApprox_) {
x_obs = boost::add_vertex(g_);
radiusProperty_[x_obs] = std::numeric_limits<double>::infinity();
}
// Grow roadmap in lazy fashion -- add edges without checking validity
while (ptc == false) {
++iterations_;
sampler_->sampleUniform(workState);
// A.I : Pruning can be done here prior to checking its validity.
/*
if (!isPromising(workState)) {
continue;
}*/
// A.I : Yet wasting the collision information for sample right now...
ompl::tools::Profiler::Begin("Vertex Collision Checking");
number_of_collision_checks_ += 1;
if (!si_->isValid(workState)) {
ompl::tools::Profiler::End("Vertex Collision Checking");
if (CObstacleApprox_) {
stateProperty_[x_obs] = si_->cloneState(workState);
Vertex x_closest = nn_->nearest(x_obs);
ompl::tools::Profiler::Begin("Configuration-Free Space Approximation");
std::vector<DancingPRMstar::type_neighbor> &neighbors = neighborProperty_[x_closest];
for (int i = 0; i < (int)neighbors.size(); i++) {
Vertex neighbor_vertex = neighbors[i].first;
double dist = distanceFunction(stateProperty_[neighbor_vertex], stateProperty_[x_obs]);
if (dist < radiusProperty_[neighbor_vertex]) {
radiusProperty_[neighbor_vertex] = dist;
witnessProperty_[neighbor_vertex] = stateProperty_[x_obs];
}
}
ompl::tools::Profiler::End("Configuration-Free Space Approximation");
}
continue;
} else {
ompl::tools::Profiler::End("Vertex Collision Checking");
}
// Add collision-free vertices.
Vertex addedVertex = addMilestone(si_->cloneState(workState), true);
// DSPT update.
Decrease(addedVertex);
// Only support a single pair of start and goal node.
Vertex startV = startM_[0];
Vertex goalV = goalM_[0];
base::PathPtr solution;
do {
if (predecessorProperty_[goalV] == nullptr || bestCost_.value() <= costProperty_[goalV])
break;
solution = constructSolution(startV, goalV);
} while (!solution);
if (solution) {
someSolutionFound = true;
base::Cost c(costProperty_[goalV]);
// A.I : If it is a non-optimal planner, it will be terminated at here,
// will keep iterating otherwise.
if (opt_->isSatisfied(c)) {
fullyOptimized = true;
bestSolution = solution;
bestCost_ = c;
break;
} else {
if (opt_->isCostBetterThan(c, bestCost_)) {
bestSolution = solution;
OMPL_INFORM("%.6lf -> %.6lf", bestCost_.value(), c.value());
bestCost_ = c;
}
}
}
}
si_->freeState(workState);
if (bestSolution) {
base::PlannerSolution psol(bestSolution);
psol.setPlannerName(getName());
// If the solution was optimized, we mark it as such
psol.setOptimized(opt_, bestCost_, fullyOptimized);
pdef_->addSolutionPath(psol);
}
ompl::tools::Profiler::End("Total");
if (CObstacleApprox_) boost::remove_vertex(x_obs, g_);
OMPL_INFORM("%lf", bestCost_.value());
double avg_degree = 0.0;
BGL_FORALL_VERTICES(vert, g_, Graph)
avg_degree += boost::out_degree(vert, g_);
avg_degree /= boost::num_vertices(g_);
OMPL_INFORM("%s: Created %u vertices and %u edges with avg. degree %lf.", getName().c_str(),
boost::num_vertices(g_) - 1, boost::num_edges(g_), avg_degree);
OMPL_INFORM("Opt success rate : %.2lf \% (%u/%u)", (double)number_of_success_opt_ /
number_of_attempt_opt_ * 100.0, number_of_success_opt_, number_of_attempt_opt_);
return bestSolution ? base::PlannerStatus::EXACT_SOLUTION :
base::PlannerStatus::TIMEOUT;
}
// Check optimized trajectory, it can over check regardless of collision checking resolution.
double ompl::geometric::DancingPRMstar::checkTrajectory(const std::vector<base::State*> &v, const Vertex &v1, const Vertex &v2,
const double weight) {
ompl::tools::Profiler::ScopedBlock _profiler("Edge Collision Checking");
double trajectory_cost = 0.0f;
auto prev = v.begin();
bool witness_update = false;
std::vector<base::State*> temp;
trajectory_cost += distanceFunction(stateProperty_[v1], v.front());
temp.push_back(stateProperty_[v1]);
temp.push_back(*prev);
for (auto it = prev + 1; it != v.end(); ++it) {
trajectory_cost += distanceFunction(*prev, *it);
temp.push_back(*it);
prev = it;
}
temp.push_back(stateProperty_[v2]);
trajectory_cost += distanceFunction(v.back(), stateProperty_[v2]);
if (trajectory_cost > max_magnitude_of_optimized_trajectory_ * weight) return -1.0;
// Compute validSegmentCount for arbitrary length of trajectory.
/*
unsigned int nd = si_->getStateSpace()->getValidSegmentCountFactor() *
trajectory_cost / si_->getStateSpace()->getLongestValidSegmentLength();
double measurable_length = trajectory_cost / static_cast<double>(nd);
*/
double measurable_length = si_->getStateSpace()->getLongestValidSegmentLength() /
si_->getStateSpace()->getValidSegmentCountFactor();
double accumulated_cost = measurable_length;
base::State *pivot = si_->allocState();
prev = temp.begin();
auto it = prev + 1;
while (it != temp.end()) {
double dist = distanceFunction(*prev, *it);
while (accumulated_cost < dist) {
si_->getStateSpace()->interpolate(*prev, *it, accumulated_cost / dist, pivot);
number_of_collision_checks_++;
if (si_->isValid(pivot)) {
// Collision test passed
} else {
if (CFreeSpaceApprox_) {
ompl::tools::Profiler::Begin("Configuration-Free Space Approximation");
dist = distanceFunction(pivot, stateProperty_[v1]);
// A.I : Update witness and radius.
if (radiusProperty_[v1] > dist) {
witnessProperty_[v1] = pivot;
radiusProperty_[v1] = dist;
}
dist = distanceFunction(pivot, stateProperty_[v2]);
if (radiusProperty_[v2] > dist) {
witnessProperty_[v2] = pivot;
radiusProperty_[v2] = dist;
}
std::vector<DancingPRMstar::type_neighbor> &neighbors_v1 = neighborProperty_[v1];
for (int i = 0; i < (int)neighbors_v1.size(); i++) {
Vertex neighbor_vertex = neighbors_v1[i].first;
double dist2 = distanceFunction(pivot, stateProperty_[neighbor_vertex]);
if (radiusProperty_[neighbor_vertex] > dist2) {
witnessProperty_[neighbor_vertex] = pivot;
radiusProperty_[neighbor_vertex] = dist2;
}
}
std::vector<DancingPRMstar::type_neighbor> &neighbors_v2 = neighborProperty_[v2];
for (int i = 0; i < (int)neighbors_v2.size(); i++) {
Vertex neighbor_vertex = neighbors_v2[i].first;
double dist2 = distanceFunction(pivot, stateProperty_[neighbor_vertex]);
if (radiusProperty_[neighbor_vertex] > dist2) {
witnessProperty_[neighbor_vertex] = pivot;
radiusProperty_[neighbor_vertex] = dist2;
}
}
ompl::tools::Profiler::End("Configuration-Free Space Approximation");
}
return -1.0;
}
accumulated_cost += measurable_length;
}
accumulated_cost -= dist;
prev = it;
++it;
}
// if (!witness_update)
si_->freeState(pivot);
return trajectory_cost;
}
// A.I : Check adaptive edge collision checking from v1 to v2 and return witness closest from v1.
bool ompl::geometric::DancingPRMstar::checkMotionAdaptively(const Vertex &v1, const Vertex &v2,
const double weight, std::vector<base::State*> *optimized) {
/* Assume motion starts/ends in a valid configuration so v1/v2 are valid */
const double r1 = radiusProperty_[v1], r2 = radiusProperty_[v2];
bool result = true;
if (result) {
// valid_++;
} else {
// invalid_++;
}
return result;
}
// A.I : Check edge collision checking from v1 to v2 and update witness.
bool ompl::geometric::DancingPRMstar::checkMotion(const Vertex &v1, const Vertex &v2,
const double weight) {
ompl::tools::Profiler::ScopedBlock _profiler("Edge Collision Checking");
/* Assume motion starts/ends in a valid configuration so v1/v2 are valid */
bool result = true, witness_update = false;
const base::State *s1 = stateProperty_[v1], *s2 = stateProperty_[v2];
int nd = si_->getStateSpace()->validSegmentCount(s1, s2);
double from_radius = (double)nd * radiusProperty_[v1] / weight;
double to_radius = (double)nd * (1.0 - radiusProperty_[v2] / weight);
if (nd > 1) {
base::State *pivot = si_->allocState();
/* Temporary storage for the checked state */
if (!BisectionCC_) {
// At j == 0 and nd -1 is corresponds to s1 and s2, respectively.
for (int j = 1 ; j < nd ; j++) {
si_->getStateSpace()->interpolate(s1, s2, (double)j / (double)nd, pivot);
number_of_collision_checks_++;
if (!si_->isValid(pivot)) {
if (CFreeSpaceApprox_) {
ompl::tools::Profiler::Begin("Configuration-Free Space Approximation");
// A.I : Update witness and radius.
// if ((double)j <= from_radius) {
if (radiusProperty_[v1] > ((double)j / (double)nd) * weight) {
witnessProperty_[v1] = pivot;
radiusProperty_[v1] = ((double)j / (double)nd) * weight;
}
// if (to_radius <= (double)j) {
if (radiusProperty_[v2] > (1.0 - (double)j / (double)nd) * weight) {
witnessProperty_[v2] = pivot;
radiusProperty_[v2] = (1.0 - (double)j / (double)nd) * weight;
}
std::vector<DancingPRMstar::type_neighbor> &neighbors_v1 = neighborProperty_[v1];
for (int i = 0; i < (int)neighbors_v1.size(); i++) {
Vertex neighbor_vertex = neighbors_v1[i].first;
double dist2 = distanceFunction(pivot, stateProperty_[neighbor_vertex]);
if (radiusProperty_[neighbor_vertex] > dist2) {
witnessProperty_[neighbor_vertex] = pivot;
radiusProperty_[neighbor_vertex] = dist2;
}
}
std::vector<DancingPRMstar::type_neighbor> &neighbors_v2 = neighborProperty_[v2];
for (int i = 0; i < (int)neighbors_v2.size(); i++) {
Vertex neighbor_vertex = neighbors_v2[i].first;
double dist2 = distanceFunction(pivot, stateProperty_[neighbor_vertex]);
if (radiusProperty_[neighbor_vertex] > dist2) {
witnessProperty_[neighbor_vertex] = pivot;
radiusProperty_[neighbor_vertex] = dist2;
}
}
ompl::tools::Profiler::End("Configuration-Free Space Approximation");
}
return false;
}
}
} else {
std::queue<std::pair<unsigned int, unsigned int> > q;
q.push(std::make_pair(1, nd - 1));
while (!q.empty()) {
auto range = q.front();
unsigned int mid;
mid = (range.first + range.second) / 2;
si_->getStateSpace()->interpolate(s1, s2, (double)mid / (double)nd, pivot);
number_of_collision_checks_++;
if (!si_->isValid(pivot)) {
if (CFreeSpaceApprox_) {
ompl::tools::Profiler::Begin("Configuration-Free Space Approximation");
int is_outside = 0;
// A.I : Update witness and radius.
double distance_to_obs = ((double)mid / (double)nd) * weight; // from v1
if (radiusProperty_[v1] > distance_to_obs) {
witnessProperty_[v1] = pivot;
radiusProperty_[v1] = distance_to_obs;
is_outside += 1;
}
distance_to_obs = (1.0 - (double)mid / (double)nd) * weight; // from v2
if (radiusProperty_[v2] > distance_to_obs) {
witnessProperty_[v2] = pivot;
radiusProperty_[v2] = distance_to_obs;
is_outside += 1;
}
std::vector<DancingPRMstar::type_neighbor> &neighbors_v1 = neighborProperty_[v1];
for (int i = 0; i < (int)neighbors_v1.size(); i++) {
Vertex neighbor_vertex = neighbors_v1[i].first;
double dist2 = distanceFunction(pivot, stateProperty_[neighbor_vertex]);
if (radiusProperty_[neighbor_vertex] > dist2) {
witnessProperty_[neighbor_vertex] = pivot;
radiusProperty_[neighbor_vertex] = dist2;
}
}
std::vector<DancingPRMstar::type_neighbor> &neighbors_v2 = neighborProperty_[v2];
for (int i = 0; i < (int)neighbors_v2.size(); i++) {
Vertex neighbor_vertex = neighbors_v2[i].first;
double dist2 = distanceFunction(pivot, stateProperty_[neighbor_vertex]);
if (radiusProperty_[neighbor_vertex] > dist2) {
witnessProperty_[neighbor_vertex] = pivot;
radiusProperty_[neighbor_vertex] = dist2;
}
}
ompl::tools::Profiler::End("Configuration-Free Space Approximation");
}
return false;
}
q.pop();
if (range.first < mid)
q.push(std::make_pair(range.first, mid - 1));
if (mid < range.second) {
q.push(std::make_pair(mid + 1, range.second));
} // if mid == first, no more recursion.
}
}
si_->freeState(pivot); // If it is collision-free, no witness.
}
return result;
}
bool ompl::geometric::DancingPRMstar::isPromising(const base::State *s) {
if (!opt_->isFinite(bestCost_))
return true;
double dist = si_->distance(stateProperty_[startM_[0]], s) +
si_->distance(s, stateProperty_[goalM_[0]]);
return dist < bestCost_.value();
}
// outedge, inedge? - doesn't matter, need to scan all the neighbors.
void ompl::geometric::DancingPRMstar::Decrease(const Vertex &v) {
ompl::tools::Profiler::ScopedBlock _profiler("Decrease");
typedef std::pair<double, Vertex> weight_vertex;
std::priority_queue<weight_vertex> pq;
// Initialize cost of v, i.e., finding best parent vertex in G(g_).
BGL_FORALL_OUTEDGES(v, e, g_, Graph) {
Vertex w = target(e, g_);
double weight = weightProperty_[e].value();
if (costProperty_[v] > costProperty_[w] + weight) {
predecessorProperty_[v] = w;
costProperty_[v] = costProperty_[w] + weight;
}
}
// No need to invoke cancelAdoption since v is newly sampled.
if (predecessorProperty_[v] != nullptr) {
childrenProperty_[predecessorProperty_[v]]->push_back(v);
}
// At this point, v has a best parent. From now on construct its subtree of descendants.
pq.push(weight_vertex(-costProperty_[v], v)); // Invert the cost value for mimicking min-heap.
while (!pq.empty()) {
weight_vertex top = pq.top();
pq.pop();
double cost = -top.first; // Invert the cost value to be like min-heap.
Vertex vert = top.second;
if (cost > costProperty_[vert]) {
continue;
}
BGL_FORALL_OUTEDGES(vert, e, g_, Graph) {
Vertex w = target(e, g_);
double weight = weightProperty_[e].value();
double cost_w = costProperty_[w];
if (cost_w > cost + weight) {
costProperty_[w] = cost + weight;
cancelAdoption(w);
predecessorProperty_[w] = vert;
childrenProperty_[vert]->push_back(w);
pq.push(weight_vertex(-costProperty_[w], w));
}
}
}
// Now, DSPT is stable.
}
#define RED (increaseIterations_ + 1) // I know, it's bad #define.
void ompl::geometric::DancingPRMstar::Increase(const Vertex vs) {
ompl::tools::Profiler::ScopedBlock _profiler("Increase");
// <Step 1. Preparation.
// white is used for color of each vertex without initialization.
// For each iteration, white is increased by 1, thus we can use it as
// equal to or less than 'white' means 'white' color, 'red' otherwise.
increaseIterations_ += 1;
std::vector<Vertex> reds;
typedef std::pair<double, Vertex> weight_vertex;
std::priority_queue<weight_vertex> pq; // Max-heap by default.
pq.push(weight_vertex(-costProperty_[vs], vs)); // It works as if it is min-heap.
// <Step 2. Coloring
while (!pq.empty()) {
weight_vertex top = pq.top();
pq.pop();
double cost = -top.first;
Vertex vert = top.second;
if (cost > costProperty_[vert]) {
continue; // Instead of heap-improve
}
// Probability to get a pink node? almost impossible.
/*
// If there exist a non-red neighbor q of z such that Dist(q) + w_(q, z) = D(z)
// set pink, that means it can keep the current cost, thus it is not necessary to
// iterate its children.
// Otherwise, set red and enqueue all the children of z.
bool pink_flag = false;
BGL_FORALL_OUTEDGES(vert, e, g_, Graph) {
Vertex w = target(e, g_);
double weight = weightProperty_[e].value();
if (colorProperty_[w] != RED && costProperty_[w] + weight == cost) {
// Actually, '<' should not be happened all the time.
// And even '==' would very rarely occur, but possible.
pink_flag = true;
cancelAdoption(vert);
predecessorProperty_[vert] = w;
childrenProperty_[w]->push_back(vert);
break; // If there exsits, take anyone among them.