Skip to content

[datafusion-spark] Implement Spark luhn_check function #16580

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 4 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
281 changes: 281 additions & 0 deletions datafusion/spark/src/function/string/luhn_check.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,281 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

use std::{any::Any, sync::Arc};

use arrow::array::{Array, AsArray, BooleanArray};
use arrow::datatypes::DataType;
use arrow::datatypes::DataType::Boolean;
use datafusion_common::types::logical_string;
use datafusion_common::utils::take_function_args;
use datafusion_common::{exec_err, Result, ScalarValue};
use datafusion_expr::{
Coercion, ColumnarValue, ScalarFunctionArgs, ScalarUDFImpl, Signature,
TypeSignatureClass, Volatility,
};

/// Spark-compatible `luhn_check` expression
/// <https://spark.apache.org/docs/latest/api/sql/index.html#luhn_check>
#[derive(Debug)]
pub struct SparkLuhnCheck {
signature: Signature,
}

impl Default for SparkLuhnCheck {
fn default() -> Self {
Self::new()
}
}

impl SparkLuhnCheck {
pub fn new() -> Self {
Self {
signature: Signature::coercible(
vec![Coercion::new_exact(TypeSignatureClass::Native(
logical_string(),
))],
Volatility::Immutable,
),
}
}
}

impl ScalarUDFImpl for SparkLuhnCheck {
fn as_any(&self) -> &dyn Any {
self
}

fn name(&self) -> &str {
"luhn_check"
}

fn signature(&self) -> &Signature {
&self.signature
}

fn return_type(&self, _arg_types: &[DataType]) -> Result<DataType> {
Ok(Boolean)
}

fn invoke_with_args(&self, args: ScalarFunctionArgs) -> Result<ColumnarValue> {
let [array] = take_function_args(self.name(), &args.args)?;

match array {
ColumnarValue::Array(array) => match array.data_type() {
DataType::Utf8View => {
let str_array = array.as_string_view();
let values = str_array
.iter()
.map(|s| s.map(luhn_check_impl))
.collect::<BooleanArray>();
Ok(ColumnarValue::Array(Arc::new(values)))
}
DataType::Utf8 => {
let str_array = array.as_string::<i32>();
let values = str_array
.iter()
.map(|s| s.map(luhn_check_impl))
.collect::<BooleanArray>();
Ok(ColumnarValue::Array(Arc::new(values)))
}
DataType::LargeUtf8 => {
let str_array = array.as_string::<i64>();
let values = str_array
.iter()
.map(|s| s.map(luhn_check_impl))
.collect::<BooleanArray>();
Ok(ColumnarValue::Array(Arc::new(values)))
}
other => {
exec_err!("Unsupported data type {other:?} for function `luhn_check`")
}
},
ColumnarValue::Scalar(ScalarValue::Utf8(Some(s)))
| ColumnarValue::Scalar(ScalarValue::LargeUtf8(Some(s)))
| ColumnarValue::Scalar(ScalarValue::Utf8View(Some(s))) => Ok(
ColumnarValue::Scalar(ScalarValue::Boolean(Some(luhn_check_impl(s)))),
),
ColumnarValue::Scalar(ScalarValue::Utf8(None))
| ColumnarValue::Scalar(ScalarValue::LargeUtf8(None))
| ColumnarValue::Scalar(ScalarValue::Utf8View(None)) => {
Ok(ColumnarValue::Scalar(ScalarValue::Boolean(None)))
}
other => {
exec_err!("Unsupported data type {other:?} for function `luhn_check`")
}
}
}
}

/// Validates a string using the Luhn algorithm.
/// Returns `true` if the input is a valid Luhn number.
fn luhn_check_impl(input: &str) -> bool {
let mut sum = 0u32;
let mut alt = false;
let mut digits_processed = 0;

for b in input.as_bytes().iter().rev() {
let digit = match b {
b'0'..=b'9' => {
digits_processed += 1;
b - b'0'
}
_ => return false,
};

let mut val = digit as u32;
if alt {
val *= 2;
if val > 9 {
val -= 9;
}
}
sum += val;
alt = !alt;
}

digits_processed > 0 && sum % 10 == 0
}

#[cfg(test)]
mod tests {
use super::*;
use arrow::array::{ArrayRef, StringArray, StringViewArray};
use arrow::datatypes::DataType::Utf8;
use arrow::datatypes::Field;

fn test_luhn_check_array(input: ArrayRef, expected: ArrayRef) -> Result<()> {
let func = SparkLuhnCheck::new();

let arg_field = Field::new("a", input.data_type().clone(), true).into();
let args = ScalarFunctionArgs {
number_rows: input.len(),
args: vec![ColumnarValue::Array(input)],
arg_fields: vec![arg_field],
return_field: Field::new("f", Utf8, true).into(),
};

let result = match func.invoke_with_args(args)? {
ColumnarValue::Array(result) => result,
_ => unreachable!("luhn_check"),
};

assert_eq!(&expected, &result);
Ok(())
}

#[test]
fn test_array_utf8() -> Result<()> {
let input = Arc::new(StringArray::from(vec![
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I wonder if we can come up with a good pattern to test these functions with the different kinds of strings

For example the main datafusion code uses this pattern: https://github.com/apache/datafusion/blob/main/datafusion/sqllogictest/test_files/string/README.md

Maybe we could do something similar for string functions in Spark (so we dont have to maintain 3 sets of expected outputs)

Some("79927398713"), // valid
Some("4417123456789113"), // valid
Some("7992 7398 714"), // invalid
Some("79927398714"), // invalid
Some(""), // invalid
Some("abc123"), // invalid
None, // null
])) as ArrayRef;

let expected = Arc::new(BooleanArray::from(vec![
Some(true),
Some(true),
Some(false),
Some(false),
Some(false),
Some(false),
None,
])) as ArrayRef;

test_luhn_check_array(input, expected)
}

#[test]
fn test_array_utf8view() -> Result<()> {
let input = Arc::new(StringViewArray::from(vec![
Some("79927398713"), // valid
Some("4417123456789113"), // valid
Some("7992 7398 714"), // invalid
Some("79927398714"), // invalid
Some(""), // invalid
Some("abc123"), // invalid
None, // null
])) as ArrayRef;

let expected = Arc::new(BooleanArray::from(vec![
Some(true),
Some(true),
Some(false),
Some(false),
Some(false),
Some(false),
None,
])) as ArrayRef;

test_luhn_check_array(input, expected)
}

fn test_luhn_check_scalar_utf8(
input: ScalarValue,
expected: ScalarValue,
) -> Result<()> {
let func = SparkLuhnCheck::new();

let result = func.invoke_with_args(ScalarFunctionArgs {
number_rows: 1,
args: vec![ColumnarValue::Scalar(input)],
arg_fields: vec![Field::new("a", Utf8, true).into()],
return_field: Field::new("f", Boolean, true).into(),
})?;

match result {
ColumnarValue::Scalar(actual) => {
assert_eq!(actual, expected);
Ok(())
}
ColumnarValue::Array(_) => {
panic!("Expected scalar output, but got array");
}
}
}

#[test]
fn test_scalar_utf8_variants() -> Result<()> {
test_luhn_check_scalar_utf8(
ScalarValue::Utf8(Some("79927398713".into())),
ScalarValue::Boolean(Some(true)),
)?;

test_luhn_check_scalar_utf8(
ScalarValue::Utf8(Some("79927398714".into())),
ScalarValue::Boolean(Some(false)),
)?;

test_luhn_check_scalar_utf8(
ScalarValue::Utf8(Some("abc123".into())),
ScalarValue::Boolean(Some(false)),
)?;

test_luhn_check_scalar_utf8(
ScalarValue::Utf8(Some(" 7992 7398 713 ".into())),
ScalarValue::Boolean(Some(false)),
)?;

test_luhn_check_scalar_utf8(ScalarValue::Utf8(None), ScalarValue::Boolean(None))?;

Ok(())
}
}
9 changes: 8 additions & 1 deletion datafusion/spark/src/function/string/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -17,13 +17,15 @@

pub mod ascii;
pub mod char;
pub mod luhn_check;

use datafusion_expr::ScalarUDF;
use datafusion_functions::make_udf_function;
use std::sync::Arc;

make_udf_function!(ascii::SparkAscii, ascii);
make_udf_function!(char::SparkChar, char);
make_udf_function!(luhn_check::SparkLuhnCheck, luhn_check);

pub mod expr_fn {
use datafusion_functions::export_functions;
Expand All @@ -38,8 +40,13 @@ pub mod expr_fn {
"Returns the ASCII character having the binary equivalent to col. If col is larger than 256 the result is equivalent to char(col % 256).",
arg1
));
export_functions!((
luhn_check,
"Checks that a string of digits is valid according to the Luhn algorithm.",
arg1
));
}

pub fn functions() -> Vec<Arc<ScalarUDF>> {
vec![ascii(), char()]
vec![ascii(), char(), luhn_check()]
}
30 changes: 24 additions & 6 deletions datafusion/sqllogictest/test_files/spark/string/luhn_check.slt
Original file line number Diff line number Diff line change
Expand Up @@ -23,16 +23,34 @@

## Original Query: SELECT luhn_check('79927398713');
## PySpark 3.5.5 Result: {'luhn_check(79927398713)': True, 'typeof(luhn_check(79927398713))': 'boolean', 'typeof(79927398713)': 'string'}
#query
#SELECT luhn_check('79927398713'::string);
query B
SELECT luhn_check('79927398713'::string);
----
true

## Original Query: SELECT luhn_check('79927398714');
## PySpark 3.5.5 Result: {'luhn_check(79927398714)': False, 'typeof(luhn_check(79927398714))': 'boolean', 'typeof(79927398714)': 'string'}
#query
#SELECT luhn_check('79927398714'::string);
query B
SELECT luhn_check('79927398714'::string);
----
false

## Original Query: SELECT luhn_check('8112189876');
## PySpark 3.5.5 Result: {'luhn_check(8112189876)': True, 'typeof(luhn_check(8112189876))': 'boolean', 'typeof(8112189876)': 'string'}
#query
#SELECT luhn_check('8112189876'::string);
query B
SELECT luhn_check('8112189876'::string);
----
true

query B
Copy link
Contributor

@comphead comphead Jun 29, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can we also add test with extra large numbers, not valid numbers, fractional, exponential and negative?

SELECT luhn_check(a)
FROM VALUES
('12344'),
('12345'),
('1234 4'),
(NULL) AS t(a);
----
true
false
false
NULL