Skip to content

⚡️ Fast, ultra-accurate text extraction from any image or PDF—including challenging ones—with structured markdown output powered by vision models.

License

Notifications You must be signed in to change notification settings

arshad-yaseen/ocr-llm

Repository files navigation

OcrLLM

Fast, ultra-accurate text extraction from any image or PDF—including challenging ones—with structured Markdown output powered by vision models.

Features

  • 🔮 Extracts text from any image or PDF, even low-quality ones
  • ✨ Outputs clean Markdown
  • 🎨 Handles tables, equations, handwriting, complex layouts, etc.
  • 🚄 Processes multiple pages in parallel
  • 🎯 Retries failed extractions automatically
  • 🖋️ Recognizes any font or writing style
  • ⚡ Caches results for faster reprocessing

Table of Contents

Supported Files

  • PDF documents (*.pdf)
  • PNG (*.png)
  • JPEG/JPG (*.jpg, *.jpeg)
  • WebP (*.webp)
  • GIF (*.gif, first frame only)
  • SVG (*.svg)

Installation

Prerequisites

OcrLLM requires GraphicsMagick and Ghostscript for PDF processing. you can install the dependencies using the following methods:

macOS

brew install graphicsmagick ghostscript

Windows

Download and install the following:

Ensure that both executables are added to your system's PATH environment variable.

Linux

sudo apt-get update && sudo apt-get install -y graphicsmagick ghostscript

These are the most common installation methods, but feel free to install GraphicsMagick and Ghostscript in any way that suits you best. The important thing is to ensure that both are successfully installed on your system.

Installing OcrLLM

Install the ocr-llm package via npm:

npm install ocr-llm

Quick Start

import {OcrLLM} from 'ocr-llm';

const ocrllm = new OcrLLM({
  provider: 'openai',
  key: 'your-api-key',
});

// Extract text from an image
const imageResult = await ocrllm.image('path/to/image.jpg');
console.log(imageResult.content);

// Process a PDF document
const pdfResults = await ocrllm.pdf('path/to/document.pdf');
pdfResults.forEach(page => {
  console.log(`Page ${page.page}:`, page.content);
});

Input Sources

OcrLLM accepts multiple input formats:

Input Type Example
File paths '/path/to/image.jpg', 'C:\\Documents\\scan.pdf'
URLs 'https://example.com/image.png', 'https://files.com/document.pdf'
Base64 strings '...'
Buffer objects Buffer.from(imageData), fs.readFileSync('image.jpg')

API Reference

OcrLLM Class

new OcrLLM(config)

Creates a new instance of OcrLLM.

  • Parameters:
    • config (Object):
      • provider (string): OCR provider (currently only 'openai' is supported)
      • key (string): API key for the provider
  • Returns: OcrLLM instance

Image Processing

ocrllm.image(input)

Processes a single image.

  • Parameters:
    • input (string | Buffer): File path, URL, base64 string, or Buffer
  • Returns: Promise<ImageResult>
    • ImageResult:
      • content (string): Extracted text in Markdown format
      • metadata (Object): Processing metadata

PDF Processing

ocrllm.pdf(input)

Processes a PDF document.

  • Parameters:
    • input (string | Buffer): File path, URL, base64 string, or Buffer
  • Returns: Promise<PageResult[]>
    • PageResult:
      • page (number): Page number
      • content (string): Extracted text in Markdown format
      • metadata (Object): Processing metadata

Error Handling

OcrLLM includes built-in error handling with detailed error messages and automatic retries for transient failures.

try {
  const result = await ocrllm.image('path/to/image.jpg');
} catch (error) {
  console.error('Processing failed:', error.message);
}

Used Models

OcrLLM uses the following model:

Provider Model Description
OpenAI gpt-4o-mini High-performance model optimized for efficient text extraction with excellent accuracy and speed.

Browser-Specific Implementation

When using OcrLLM in serverless environments like Vercel, the core library's PDF processing requires system-level dependencies (GraphicsMagick, Ghostscript) that cannot be installed. However, you can use the pdf-to-images-browser package to handle PDF-to-image conversion directly in the browser without any system dependencies or configuration.

By using pdf-to-images-browser for PDF conversion in the client and OcrLLM for text extraction in the server, you can maintain full functionality without needing system dependencies on your server. This hybrid approach gives you the best of both worlds: client-side PDF handling and server-side OCR processing.

We are using Next.js to demonstrate the browser implementation. The same technique can be applied to any browser environment where you need to process PDFs without server-side dependencies.

First, install the pdf-to-images-browser package:

npm install pdf-to-images-browser

Then in your client component:

import pdfToImages from 'pdf-to-images-browser';

const handlePdfUpload = async (pdfFile: File) => {
  try {
    // Convert PDF to images
    const images = await pdfToImages(pdfFile, {
      output: 'blob',
    });

    // Create FormData and append images
    const formData = new FormData();
    images.forEach((image, index) => {
      formData.append('images', image, `page-${index + 1}.png`);
    });

    // Send to API route
    const response = await fetch('/api/extract', {
      method: 'POST',
      body: formData,
    });

    const data = await response.json();
    console.log('Extracted text:', data.results);
  } catch (error) {
    console.error('Error processing PDF:', error);
  }
};

In your Next.js API route handler (app/api/extract/route.ts):

import {NextRequest, NextResponse} from 'next/server';

import {OcrLLM} from 'ocr-llm';

const ocrllm = new OcrLLM({
  provider: 'openai',
  key: process.env.OPENAI_API_KEY!,
});

export async function POST(req: NextRequest) {
  try {
    const formData = await req.formData();
    const images = formData.getAll('images');

    // Process each image and extract text
    const results = await Promise.all(
      images.map(async image => {
        const buffer = Buffer.from(await (image as Blob).arrayBuffer());
        return ocrllm.image(buffer);
      }),
    );

    return NextResponse.json({results});
  } catch (error) {
    console.error('Failed to process images:', error);
    return NextResponse.json(
      {error: 'Failed to process images'},
      {status: 500},
    );
  }
}

Contributing

We welcome contributions from the community to enhance OcrLLM's capabilities and make it even more powerful. ❤️

For guidelines on contributing, please read the Contributing Guide.

About

⚡️ Fast, ultra-accurate text extraction from any image or PDF—including challenging ones—with structured markdown output powered by vision models.

Topics

Resources

License

Code of conduct

Stars

Watchers

Forks

Sponsor this project

 

Packages

No packages published