Fast, ultra-accurate text extraction from any image or PDF—including challenging ones—with structured Markdown output powered by vision models.
- 🔮 Extracts text from any image or PDF, even low-quality ones
- ✨ Outputs clean Markdown
- 🎨 Handles tables, equations, handwriting, complex layouts, etc.
- 🚄 Processes multiple pages in parallel
- 🎯 Retries failed extractions automatically
- 🖋️ Recognizes any font or writing style
- ⚡ Caches results for faster reprocessing
- Features
- Table of Contents
- Installation
- Quick Start
- Input Sources
- API Reference
- Error Handling
- Used Models
- Browser-Specific Implementation
- Contributing
- PDF documents (*.pdf)
- PNG (*.png)
- JPEG/JPG (*.jpg, *.jpeg)
- WebP (*.webp)
- GIF (*.gif, first frame only)
- SVG (*.svg)
OcrLLM requires GraphicsMagick and Ghostscript for PDF processing. you can install the dependencies using the following methods:
brew install graphicsmagick ghostscript
Download and install the following:
Ensure that both executables are added to your system's PATH
environment variable.
sudo apt-get update && sudo apt-get install -y graphicsmagick ghostscript
These are the most common installation methods, but feel free to install GraphicsMagick and Ghostscript in any way that suits you best. The important thing is to ensure that both are successfully installed on your system.
Install the ocr-llm
package via npm:
npm install ocr-llm
import {OcrLLM} from 'ocr-llm';
const ocrllm = new OcrLLM({
provider: 'openai',
key: 'your-api-key',
});
// Extract text from an image
const imageResult = await ocrllm.image('path/to/image.jpg');
console.log(imageResult.content);
// Process a PDF document
const pdfResults = await ocrllm.pdf('path/to/document.pdf');
pdfResults.forEach(page => {
console.log(`Page ${page.page}:`, page.content);
});
OcrLLM accepts multiple input formats:
Input Type | Example |
---|---|
File paths | '/path/to/image.jpg' , 'C:\\Documents\\scan.pdf' |
URLs | 'https://example.com/image.png' , 'https://files.com/document.pdf' |
Base64 strings | '...' |
Buffer objects | Buffer.from(imageData) , fs.readFileSync('image.jpg') |
Creates a new instance of OcrLLM.
- Parameters:
config
(Object):provider
(string): OCR provider (currently only'openai'
is supported)key
(string): API key for the provider
- Returns:
OcrLLM
instance
Processes a single image.
- Parameters:
input
(string | Buffer): File path, URL, base64 string, or Buffer
- Returns:
Promise<ImageResult>
- ImageResult:
content
(string): Extracted text in Markdown formatmetadata
(Object): Processing metadata
- ImageResult:
Processes a PDF document.
- Parameters:
input
(string | Buffer): File path, URL, base64 string, or Buffer
- Returns:
Promise<PageResult[]>
- PageResult:
page
(number): Page numbercontent
(string): Extracted text in Markdown formatmetadata
(Object): Processing metadata
- PageResult:
OcrLLM includes built-in error handling with detailed error messages and automatic retries for transient failures.
try {
const result = await ocrllm.image('path/to/image.jpg');
} catch (error) {
console.error('Processing failed:', error.message);
}
OcrLLM uses the following model:
Provider | Model | Description |
---|---|---|
OpenAI | gpt-4o-mini |
High-performance model optimized for efficient text extraction with excellent accuracy and speed. |
When using OcrLLM in serverless environments like Vercel, the core library's PDF processing requires system-level dependencies (GraphicsMagick, Ghostscript) that cannot be installed. However, you can use the pdf-to-images-browser
package to handle PDF-to-image conversion directly in the browser without any system dependencies or configuration.
By using pdf-to-images-browser
for PDF conversion in the client and OcrLLM for text extraction in the server, you can maintain full functionality without needing system dependencies on your server. This hybrid approach gives you the best of both worlds: client-side PDF handling and server-side OCR processing.
We are using Next.js to demonstrate the browser implementation. The same technique can be applied to any browser environment where you need to process PDFs without server-side dependencies.
First, install the pdf-to-images-browser
package:
npm install pdf-to-images-browser
Then in your client component:
import pdfToImages from 'pdf-to-images-browser';
const handlePdfUpload = async (pdfFile: File) => {
try {
// Convert PDF to images
const images = await pdfToImages(pdfFile, {
output: 'blob',
});
// Create FormData and append images
const formData = new FormData();
images.forEach((image, index) => {
formData.append('images', image, `page-${index + 1}.png`);
});
// Send to API route
const response = await fetch('/api/extract', {
method: 'POST',
body: formData,
});
const data = await response.json();
console.log('Extracted text:', data.results);
} catch (error) {
console.error('Error processing PDF:', error);
}
};
In your Next.js API route handler (app/api/extract/route.ts
):
import {NextRequest, NextResponse} from 'next/server';
import {OcrLLM} from 'ocr-llm';
const ocrllm = new OcrLLM({
provider: 'openai',
key: process.env.OPENAI_API_KEY!,
});
export async function POST(req: NextRequest) {
try {
const formData = await req.formData();
const images = formData.getAll('images');
// Process each image and extract text
const results = await Promise.all(
images.map(async image => {
const buffer = Buffer.from(await (image as Blob).arrayBuffer());
return ocrllm.image(buffer);
}),
);
return NextResponse.json({results});
} catch (error) {
console.error('Failed to process images:', error);
return NextResponse.json(
{error: 'Failed to process images'},
{status: 500},
);
}
}
We welcome contributions from the community to enhance OcrLLM's capabilities and make it even more powerful. ❤️
For guidelines on contributing, please read the Contributing Guide.