Skip to content

ashfaq1701/temporal-random-walk

Repository files navigation

🚀 Temporal Random Walk

PyPI Latest Release PyPI Downloads

A high-performance temporal random walk sampler for dynamic networks with GPU acceleration. Built for scale.


🔥 Why Temporal Random Walk?

Performance First – GPU-accelerated sampling for massive networks
Memory Efficient – Smart memory management for large graphs
Flexible Integration – Easy Python bindings with NumPy/NetworkX support
Production Ready – Tested with hundreds of extensive unit tests.
Multi Platform Builds and runs seamlessly on devices with or without CUDA.


⚡ Quick Start

from temporal_random_walk import TemporalRandomWalk

# Create a directed temporal graph
walker = TemporalRandomWalk(is_directed=True, use_gpu=True, max_time_capacity=-1)

# Add edges - can be numpy arrays or python lists
sources = [3, 2, 0, 3, 3, 1]
targets = [4, 4, 2, 1, 2, 4]
timestamps = [71, 82, 19, 34, 79, 19]

walker.add_multiple_edges(sources, targets, timestamps)

# Sample walks with exponential time bias
walk_nodes, walk_timestamps, walk_lens = walker.get_random_walks_and_times_for_all_nodes(
    max_walk_len=5,
    walk_bias="ExponentialIndex",
    num_walks_per_node=10,
    initial_edge_bias="Uniform"
)

✨ Key Features

  • GPU acceleration for large graphs
  • 🎯 Multiple sampling strategies – Uniform, Linear, Exponential
  • 🔄 Forward & backward temporal walks
  • 📡 Rolling window support for streaming data
  • 🔗 NetworkX integration
  • 🛠️ Efficient memory management
  • ⚙️ Uses C++ std libraries or Thrust API selectively based on hardware availability and configuration.

📦 Dependencies

Dependency Purpose
pybind11 Python-C++ bindings
python3 Required for building the python interfaces
gtest Unit testing framework

💡 Tip: Use vcpkg to easily install and link the C++ dependencies.


📦 Installation

pip install temporal-random-walk

📖 Documentation

📌 C++ Documentation →
📌 Python Interface Documentation →


📚 Inspired By

Nguyen, Giang Hoang, et al.
"Continuous-Time Dynamic Network Embeddings."
Companion Proceedings of The Web Conference 2018.

👨‍🔬 Built by Packets Research Lab

🚀 Contributions welcome! Open a PR or issue if you have suggestions.

About

An efficient CUDA accelerated C++ framework for temporal random walk algorithm

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published