PyTorch implementation of ResNet-D from "Bag of Tricks for Image Classification with Convolutional Neural Networks" (He et al., CVPR2019)
paper: https://arxiv.org/pdf/1812.01187
summary (KOR): https://bo-10000.tistory.com/133
resnetD.py:
resnet18
resnet34
resnet50
resnet101
resnet152
resnet50D
resnet101D
resnet152D
resnetD_3d.py:
resnet3d18
resnet3d34
resnet3d50
resnet3d101
resnet3d152
resnet3d50D
resnet3d101D
resnet3d152D
#2D models
from resnetD import *
model = resnet50D()
#3D models
from resnetD_3d import *
model = resnet3d50D()
in_channels (int, defauult=3)
: input channel dimensionnum_classes (int, default=1000)
: number of class labelszero_init_residual (bool, default=False)
: Zero-initialize the last BN in each residual branch, so that the residual branch starts with zeros, and each residual block behaves like an identity.groups (int, default=1)
: number of groups for conv3x3width_per_group (int, default=64)
: to change model widthreplace_stride_with_dilation (list of bools, default=None)
: each element in the tuple indicates if we should replace the 2x2 stride with a dilated convolution insteadnorm_layer (nn.Module, default=None)
: norm layer to use