Skip to content

PyTorch implementation of ResNet-D from Bag of Tricks for Image Classification with Convolutional Neural Networks (https://arxiv.org/pdf/1812.01187)

Notifications You must be signed in to change notification settings

bo-10000/ResNet-D_PyTorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

6925bd0 · Jul 22, 2022

History

18 Commits
Jul 22, 2022
Jun 6, 2022
Jun 6, 2022

Repository files navigation

ResNet-D_PyTorch

PyTorch implementation of ResNet-D from "Bag of Tricks for Image Classification with Convolutional Neural Networks" (He et al., CVPR2019)

paper: https://arxiv.org/pdf/1812.01187

summary (KOR): https://bo-10000.tistory.com/133



Models available

resnetD.py:

  • resnet18
  • resnet34
  • resnet50
  • resnet101
  • resnet152
  • resnet50D
  • resnet101D
  • resnet152D

resnetD_3d.py:

  • resnet3d18
  • resnet3d34
  • resnet3d50
  • resnet3d101
  • resnet3d152
  • resnet3d50D
  • resnet3d101D
  • resnet3d152D

How to use

#2D models
from resnetD import *

model = resnet50D()

#3D models
from resnetD_3d import *

model = resnet3d50D()

Model parameters

  • in_channels (int, defauult=3): input channel dimension
  • num_classes (int, default=1000): number of class labels
  • zero_init_residual (bool, default=False): Zero-initialize the last BN in each residual branch, so that the residual branch starts with zeros, and each residual block behaves like an identity.
  • groups (int, default=1): number of groups for conv3x3
  • width_per_group (int, default=64): to change model width
  • replace_stride_with_dilation (list of bools, default=None): each element in the tuple indicates if we should replace the 2x2 stride with a dilated convolution instead
  • norm_layer (nn.Module, default=None): norm layer to use

About

PyTorch implementation of ResNet-D from Bag of Tricks for Image Classification with Convolutional Neural Networks (https://arxiv.org/pdf/1812.01187)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages