Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

chore(deps): update dependency numpy to v1.26.4 #52

Open
wants to merge 1 commit into
base: master
Choose a base branch
from

Conversation

renovate[bot]
Copy link
Contributor

@renovate renovate bot commented Jul 24, 2024

This PR contains the following updates:

Package Change Age Adoption Passing Confidence
numpy (changelog) ==1.24.3 -> ==1.26.4 age adoption passing confidence

Release Notes

numpy/numpy (numpy)

v1.26.4

Compare Source

NumPy 1.26.4 Release Notes

NumPy 1.26.4 is a maintenance release that fixes bugs and regressions
discovered after the 1.26.3 release. The Python versions supported by
this release are 3.9-3.12. This is the last planned release in the
1.26.x series.

Contributors

A total of 13 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Charles Harris
  • Elliott Sales de Andrade
  • Lucas Colley +
  • Mark Ryan +
  • Matti Picus
  • Nathan Goldbaum
  • Ola x Nilsson +
  • Pieter Eendebak
  • Ralf Gommers
  • Sayed Adel
  • Sebastian Berg
  • Stefan van der Walt
  • Stefano Rivera

Pull requests merged

A total of 19 pull requests were merged for this release.

  • #​25323: BUG: Restore missing asstr import
  • #​25523: MAINT: prepare 1.26.x for further development
  • #​25539: BUG: numpy.array_api: fix linalg.cholesky upper decomp...
  • #​25584: CI: Bump azure pipeline timeout to 120 minutes
  • #​25585: MAINT, BLD: Fix unused inline functions warnings on clang
  • #​25599: BLD: include fix for MinGW platform detection
  • #​25618: TST: Fix test_numeric on riscv64
  • #​25619: BLD: fix building for windows ARM64
  • #​25620: MAINT: add newaxis to __all__ in numpy.array_api
  • #​25630: BUG: Use large file fallocate on 32 bit linux platforms
  • #​25643: TST: Fix test_warning_calls on Python 3.12
  • #​25645: TST: Bump pytz to 2023.3.post1
  • #​25658: BUG: Fix AVX512 build flags on Intel Classic Compiler
  • #​25670: BLD: fix potential issue with escape sequences in __config__.py
  • #​25718: CI: pin cygwin python to 3.9.16-1 and fix typing tests [skip...
  • #​25720: MAINT: Bump cibuildwheel to v2.16.4
  • #​25748: BLD: unvendor meson-python on 1.26.x and upgrade to meson-python...
  • #​25755: MAINT: Include header defining backtrace
  • #​25756: BUG: Fix np.quantile([Fraction(2,1)], 0.5) (#​24711)

Checksums

MD5
90f33cdd8934cd07192d6ede114d8d4d  numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl
63ac60767f6724490e587f6010bd6839  numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl
ad4e82b225aaaf5898ea9798b50978d8  numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d428e3da2df4fa359313348302cf003a  numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
89937c3bb596193f8ca9eae2ff84181e  numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl
de4f9da0a4e6dfd4cec39c7ad5139803  numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl
2c1f73fd9b3acf4b9b0c23e985cdd38f  numpy-1.26.4-cp310-cp310-win32.whl
920ad1f50e478b1a877fe7b7a46cc520  numpy-1.26.4-cp310-cp310-win_amd64.whl
719d1ff12db38903dcfd6749078fb11d  numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl
eb601e80194d2e1c00d8daedd8dc68c4  numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl
71a7ab11996fa370dc28e28731bd5c32  numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
eb0cdd03e1ee2eb45c57c7340c98cf48  numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9d4ae1b0b27a625400f81ed1846a5667  numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl
1b6771350d2f496157430437a895ba4b  numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl
1e4a18612ee4d0e54e0833574ebc6d25  numpy-1.26.4-cp311-cp311-win32.whl
5fd325dd8704023c1110835d7a1b095a  numpy-1.26.4-cp311-cp311-win_amd64.whl
d95ce582923d24dbddbc108aa5fd2128  numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl
6f16f3d70e0d95ce2b032167c546cc95  numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl
5369536d4c45fbe384147ff23185b48a  numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
1ceb224096686831ad731e472b65e96a  numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cd8d3c00bbc89f9bc07e2df762f9e2ae  numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl
5bd81ce840bb2e42befe01efb0402b79  numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl
2cc3b0757228078395da3efa3dc99f23  numpy-1.26.4-cp312-cp312-win32.whl
305155bd5ae879344c58968879584ed1  numpy-1.26.4-cp312-cp312-win_amd64.whl
ec2310f67215743e9c5d16b6c9fb87b6  numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl
406aea6081c1affbebdb6ad56b5deaf4  numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl
fee12f0a3cbac7bbf1a1c2d82d3b02a9  numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
baf4b7143c7b9ce170e62b33380fb573  numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
376ff29f90b7840ae19ecd59ad1ddf53  numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl
86785b3a7cd156c08c2ebc26f7816fb3  numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl
ab8a9ab69f16b7005f238cda76bc0bac  numpy-1.26.4-cp39-cp39-win32.whl
fafa4453e820c7ff40907e5dc79d8199  numpy-1.26.4-cp39-cp39-win_amd64.whl
7f13e2f07bd3e4a439ade0e4d27905c6  numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
928954b41c1cd0e856f1a31d41722661  numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
57bbd5c0b3848d804c416cbcab4a0ae8  numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl
19550cbe7bedd96a928da9d4ad69509d  numpy-1.26.4.tar.gz
SHA256
9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0  numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl
2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a  numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl
d209d8969599b27ad20994c8e41936ee0964e6da07478d6c35016bc386b66ad4  numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ffa75af20b44f8dba823498024771d5ac50620e6915abac414251bd971b4529f  numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
62b8e4b1e28009ef2846b4c7852046736bab361f7aeadeb6a5b89ebec3c7055a  numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl
a4abb4f9001ad2858e7ac189089c42178fcce737e4169dc61321660f1a96c7d2  numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl
bfe25acf8b437eb2a8b2d49d443800a5f18508cd811fea3181723922a8a82b07  numpy-1.26.4-cp310-cp310-win32.whl
b97fe8060236edf3662adfc2c633f56a08ae30560c56310562cb4f95500022d5  numpy-1.26.4-cp310-cp310-win_amd64.whl
4c66707fabe114439db9068ee468c26bbdf909cac0fb58686a42a24de1760c71  numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl
edd8b5fe47dab091176d21bb6de568acdd906d1887a4584a15a9a96a1dca06ef  numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl
7ab55401287bfec946ced39700c053796e7cc0e3acbef09993a9ad2adba6ca6e  numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
666dbfb6ec68962c033a450943ded891bed2d54e6755e35e5835d63f4f6931d5  numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
96ff0b2ad353d8f990b63294c8986f1ec3cb19d749234014f4e7eb0112ceba5a  numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl
60dedbb91afcbfdc9bc0b1f3f402804070deed7392c23eb7a7f07fa857868e8a  numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl
1af303d6b2210eb850fcf03064d364652b7120803a0b872f5211f5234b399f20  numpy-1.26.4-cp311-cp311-win32.whl
cd25bcecc4974d09257ffcd1f098ee778f7834c3ad767fe5db785be9a4aa9cb2  numpy-1.26.4-cp311-cp311-win_amd64.whl
b3ce300f3644fb06443ee2222c2201dd3a89ea6040541412b8fa189341847218  numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl
03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b  numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl
9fad7dcb1aac3c7f0584a5a8133e3a43eeb2fe127f47e3632d43d677c66c102b  numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
675d61ffbfa78604709862923189bad94014bef562cc35cf61d3a07bba02a7ed  numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ab47dbe5cc8210f55aa58e4805fe224dac469cde56b9f731a4c098b91917159a  numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl
1dda2e7b4ec9dd512f84935c5f126c8bd8b9f2fc001e9f54af255e8c5f16b0e0  numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl
50193e430acfc1346175fcbdaa28ffec49947a06918b7b92130744e81e640110  numpy-1.26.4-cp312-cp312-win32.whl
08beddf13648eb95f8d867350f6a018a4be2e5ad54c8d8caed89ebca558b2818  numpy-1.26.4-cp312-cp312-win_amd64.whl
7349ab0fa0c429c82442a27a9673fc802ffdb7c7775fad780226cb234965e53c  numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl
52b8b60467cd7dd1e9ed082188b4e6bb35aa5cdd01777621a1658910745b90be  numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl
d5241e0a80d808d70546c697135da2c613f30e28251ff8307eb72ba696945764  numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f870204a840a60da0b12273ef34f7051e98c3b5961b61b0c2c1be6dfd64fbcd3  numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
679b0076f67ecc0138fd2ede3a8fd196dddc2ad3254069bcb9faf9a79b1cebcd  numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl
47711010ad8555514b434df65f7d7b076bb8261df1ca9bb78f53d3b2db02e95c  numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl
a354325ee03388678242a4d7ebcd08b5c727033fcff3b2f536aea978e15ee9e6  numpy-1.26.4-cp39-cp39-win32.whl
3373d5d70a5fe74a2c1bb6d2cfd9609ecf686d47a2d7b1d37a8f3b6bf6003aea  numpy-1.26.4-cp39-cp39-win_amd64.whl
afedb719a9dcfc7eaf2287b839d8198e06dcd4cb5d276a3df279231138e83d30  numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
95a7476c59002f2f6c590b9b7b998306fba6a5aa646b1e22ddfeaf8f78c3a29c  numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7e50d0a0cc3189f9cb0aeb3a6a6af18c16f59f004b866cd2be1c14b36134a4a0  numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl
2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010  numpy-1.26.4.tar.gz

v1.26.3

Compare Source

NumPy 1.26.3 Release Notes

NumPy 1.26.3 is a maintenance release that fixes bugs and regressions
discovered after the 1.26.2 release. The most notable changes are the
f2py bug fixes. The Python versions supported by this release are
3.9-3.12.

Compatibility

f2py will no longer accept ambiguous -m and .pyf CLI combinations.
When more than one .pyf file is passed, an error is raised. When both
-m and a .pyf is passed, a warning is emitted and the -m provided
name is ignored.

Improvements

f2py now handles common blocks which have kind specifications from
modules. This further expands the usability of intrinsics like
iso_fortran_env and iso_c_binding.

Contributors

A total of 18 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • @​DWesl
  • @​Illviljan
  • Alexander Grund
  • Andrea Bianchi +
  • Charles Harris
  • Daniel Vanzo
  • Johann Rohwer +
  • Matti Picus
  • Nathan Goldbaum
  • Peter Hawkins
  • Raghuveer Devulapalli
  • Ralf Gommers
  • Rohit Goswami
  • Sayed Adel
  • Sebastian Berg
  • Stefano Rivera +
  • Thomas A Caswell
  • matoro

Pull requests merged

A total of 42 pull requests were merged for this release.

  • #​25130: MAINT: prepare 1.26.x for further development
  • #​25188: TYP: add None to __getitem__ in numpy.array_api
  • #​25189: BLD,BUG: quadmath required where available [f2py]
  • #​25190: BUG: alpha doesn't use REAL(10)
  • #​25191: BUG: Fix FP overflow error in division when the divisor is scalar
  • #​25192: MAINT: Pin scipy-openblas version.
  • #​25201: BUG: Fix f2py to enable use of string optional inout argument
  • #​25202: BUG: Fix -fsanitize=alignment issue in numpy/_core/src/multiarray/arraytypes.c.src
  • #​25203: TST: Explicitly pass NumPy path to cython during tests (also...
  • #​25204: BUG: fix issues with newaxis and linalg.solve in numpy.array_api
  • #​25205: BUG: Disallow shadowed modulenames
  • #​25217: BUG: Handle common blocks with kind specifications from modules
  • #​25218: BUG: Fix moving compiled executable to root with f2py -c on Windows
  • #​25219: BUG: Fix single to half-precision conversion on PPC64/VSX3
  • #​25227: TST: f2py: fix issue in test skip condition
  • #​25240: Revert "MAINT: Pin scipy-openblas version."
  • #​25249: MAINT: do not use long type
  • #​25377: TST: PyPy needs another gc.collect on latest versions
  • #​25378: CI: Install Lapack runtime on Cygwin.
  • #​25379: MAINT: Bump conda-incubator/setup-miniconda from 2.2.0 to 3.0.1
  • #​25380: BLD: update vendored Meson for AIX shared library fix
  • #​25419: MAINT: Init base in cpu_avx512_kn
  • #​25420: BUG: Fix failing test_features on SapphireRapids
  • #​25422: BUG: Fix non-contiguous memory load when ARM/Neon is enabled
  • #​25428: MAINT,BUG: Never import distutils above 3.12 [f2py]
  • #​25452: MAINT: make the import-time check for old Accelerate more specific
  • #​25458: BUG: fix macOS version checks for Accelerate support
  • #​25465: MAINT: Bump actions/setup-node and larsoner/circleci-artifacts-redirector-action
  • #​25466: BUG: avoid seg fault from OOB access in RandomState.set_state()
  • #​25467: BUG: Fix two errors related to not checking for failed allocations
  • #​25468: BUG: Fix regression with f2py wrappers when modules and subroutines...
  • #​25475: BUG: Fix build issues on SPR
  • #​25478: BLD: fix uninitialized variable warnings from simd/neon/memory.h
  • #​25480: BUG: Handle iso_c_type mappings more consistently
  • #​25481: BUG: Fix module name bug in signature files [urgent] [f2py]
  • #​25482: BUG: Handle .pyf.src and fix SciPy [urgent]
  • #​25483: DOC: f2py rewrite with meson details
  • #​25485: BUG: Add external library handling for meson [f2py]
  • #​25486: MAINT: Run f2py's meson backend with the same python that ran...
  • #​25489: MAINT: Update numpy/f2py/_backends from main.
  • #​25490: MAINT: Easy updates of f2py/*.py from main.
  • #​25491: MAINT: Update crackfortran.py and f2py2e.py from main

Checksums

MD5
7660db27715df261948e7f0f13634f16  numpy-1.26.3-cp310-cp310-macosx_10_9_x86_64.whl
98d5b98c822de4bed0cf1b0b8f367192  numpy-1.26.3-cp310-cp310-macosx_11_0_arm64.whl
b71cd0710cec5460292a97a02fa349cd  numpy-1.26.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0f98a05c92598f849b1be2595f4a52a8  numpy-1.26.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b866c6aea8070c0753b776d2b521e875  numpy-1.26.3-cp310-cp310-musllinux_1_1_aarch64.whl
cfdde5868e469fb27655ea73b0b9593b  numpy-1.26.3-cp310-cp310-musllinux_1_1_x86_64.whl
2655440d61671b5e32b049d30397c58f  numpy-1.26.3-cp310-cp310-win32.whl
7718a5d33344784ca7821f3bdd467550  numpy-1.26.3-cp310-cp310-win_amd64.whl
28e4b2ed9192c392f792d88b3c246d1c  numpy-1.26.3-cp311-cp311-macosx_10_9_x86_64.whl
fb1ae72749463e2c82f0127699728364  numpy-1.26.3-cp311-cp311-macosx_11_0_arm64.whl
304dec822b508a1d495917610e7562bf  numpy-1.26.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2cc0d8b073dfd55946a60ba8ed4369f6  numpy-1.26.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c99962375c599501820899c8ccab6960  numpy-1.26.3-cp311-cp311-musllinux_1_1_aarch64.whl
47ed42d067ce4863bbf1f40da61ba7d1  numpy-1.26.3-cp311-cp311-musllinux_1_1_x86_64.whl
3ab3757255feb54ca3793fb9db226586  numpy-1.26.3-cp311-cp311-win32.whl
c33f2a4518bae535645357a08a93be1a  numpy-1.26.3-cp311-cp311-win_amd64.whl
bea43600aaff3a4d9978611ccfa44198  numpy-1.26.3-cp312-cp312-macosx_10_9_x86_64.whl
c678d909ebe737fdabf215d8622ce2a3  numpy-1.26.3-cp312-cp312-macosx_11_0_arm64.whl
9f21f1875c92425cec1060564b3abb1c  numpy-1.26.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c44a1998965d45ec136078ee09d880f2  numpy-1.26.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9274f5c51fa4f3c8fac5efa3d78acd63  numpy-1.26.3-cp312-cp312-musllinux_1_1_aarch64.whl
07c9f8f86f45077febc46c87ebc0b644  numpy-1.26.3-cp312-cp312-musllinux_1_1_x86_64.whl
a4857b2f7b6a23bca41178bd344bb28a  numpy-1.26.3-cp312-cp312-win32.whl
495d9534961d7b10f16fec4515a3d72b  numpy-1.26.3-cp312-cp312-win_amd64.whl
6494f2d94fd1f184923a33e634692b5e  numpy-1.26.3-cp39-cp39-macosx_10_9_x86_64.whl
515a7314a0ff6aaba8d53a7a1aaa73ab  numpy-1.26.3-cp39-cp39-macosx_11_0_arm64.whl
c856adc6a6a78773c43e9c738d662ed5  numpy-1.26.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
09848456158a01feff28f88c6106aef1  numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
adec00ea2bc98580a436f82e188c0e2f  numpy-1.26.3-cp39-cp39-musllinux_1_1_aarch64.whl
718bd35dd0431a6434bb30bf8d91d77d  numpy-1.26.3-cp39-cp39-musllinux_1_1_x86_64.whl
e813aa59cb807efb4a8fee52a6dd41ba  numpy-1.26.3-cp39-cp39-win32.whl
08e1b0973d0ae5976b38563eaec1253f  numpy-1.26.3-cp39-cp39-win_amd64.whl
e8887a14750161709636e9fb87df4f36  numpy-1.26.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
0bdb19040525451553fb5758b65caf4c  numpy-1.26.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b931c14d06cc37d85d63ed1ddd88e875  numpy-1.26.3-pp39-pypy39_pp73-win_amd64.whl
1c915dc6c36dd4c674d9379e9470ff8b  numpy-1.26.3.tar.gz
SHA256
806dd64230dbbfaca8a27faa64e2f414bf1c6622ab78cc4264f7f5f028fee3bf  numpy-1.26.3-cp310-cp310-macosx_10_9_x86_64.whl
02f98011ba4ab17f46f80f7f8f1c291ee7d855fcef0a5a98db80767a468c85cd  numpy-1.26.3-cp310-cp310-macosx_11_0_arm64.whl
6d45b3ec2faed4baca41c76617fcdcfa4f684ff7a151ce6fc78ad3b6e85af0a6  numpy-1.26.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bdd2b45bf079d9ad90377048e2747a0c82351989a2165821f0c96831b4a2a54b  numpy-1.26.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
211ddd1e94817ed2d175b60b6374120244a4dd2287f4ece45d49228b4d529178  numpy-1.26.3-cp310-cp310-musllinux_1_1_aarch64.whl
b1240f767f69d7c4c8a29adde2310b871153df9b26b5cb2b54a561ac85146485  numpy-1.26.3-cp310-cp310-musllinux_1_1_x86_64.whl
21a9484e75ad018974a2fdaa216524d64ed4212e418e0a551a2d83403b0531d3  numpy-1.26.3-cp310-cp310-win32.whl
9e1591f6ae98bcfac2a4bbf9221c0b92ab49762228f38287f6eeb5f3f55905ce  numpy-1.26.3-cp310-cp310-win_amd64.whl
b831295e5472954104ecb46cd98c08b98b49c69fdb7040483aff799a755a7374  numpy-1.26.3-cp311-cp311-macosx_10_9_x86_64.whl
9e87562b91f68dd8b1c39149d0323b42e0082db7ddb8e934ab4c292094d575d6  numpy-1.26.3-cp311-cp311-macosx_11_0_arm64.whl
8c66d6fec467e8c0f975818c1796d25c53521124b7cfb760114be0abad53a0a2  numpy-1.26.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f25e2811a9c932e43943a2615e65fc487a0b6b49218899e62e426e7f0a57eeda  numpy-1.26.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
af36e0aa45e25c9f57bf684b1175e59ea05d9a7d3e8e87b7ae1a1da246f2767e  numpy-1.26.3-cp311-cp311-musllinux_1_1_aarch64.whl
51c7f1b344f302067b02e0f5b5d2daa9ed4a721cf49f070280ac202738ea7f00  numpy-1.26.3-cp311-cp311-musllinux_1_1_x86_64.whl
7ca4f24341df071877849eb2034948459ce3a07915c2734f1abb4018d9c49d7b  numpy-1.26.3-cp311-cp311-win32.whl
39763aee6dfdd4878032361b30b2b12593fb445ddb66bbac802e2113eb8a6ac4  numpy-1.26.3-cp311-cp311-win_amd64.whl
a7081fd19a6d573e1a05e600c82a1c421011db7935ed0d5c483e9dd96b99cf13  numpy-1.26.3-cp312-cp312-macosx_10_9_x86_64.whl
12c70ac274b32bc00c7f61b515126c9205323703abb99cd41836e8125ea0043e  numpy-1.26.3-cp312-cp312-macosx_11_0_arm64.whl
7f784e13e598e9594750b2ef6729bcd5a47f6cfe4a12cca13def35e06d8163e3  numpy-1.26.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5f24750ef94d56ce6e33e4019a8a4d68cfdb1ef661a52cdaee628a56d2437419  numpy-1.26.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
77810ef29e0fb1d289d225cabb9ee6cf4d11978a00bb99f7f8ec2132a84e0166  numpy-1.26.3-cp312-cp312-musllinux_1_1_aarch64.whl
8ed07a90f5450d99dad60d3799f9c03c6566709bd53b497eb9ccad9a55867f36  numpy-1.26.3-cp312-cp312-musllinux_1_1_x86_64.whl
f73497e8c38295aaa4741bdfa4fda1a5aedda5473074369eca10626835445511  numpy-1.26.3-cp312-cp312-win32.whl
da4b0c6c699a0ad73c810736303f7fbae483bcb012e38d7eb06a5e3b432c981b  numpy-1.26.3-cp312-cp312-win_amd64.whl
1666f634cb3c80ccbd77ec97bc17337718f56d6658acf5d3b906ca03e90ce87f  numpy-1.26.3-cp39-cp39-macosx_10_9_x86_64.whl
18c3319a7d39b2c6a9e3bb75aab2304ab79a811ac0168a671a62e6346c29b03f  numpy-1.26.3-cp39-cp39-macosx_11_0_arm64.whl
0b7e807d6888da0db6e7e75838444d62495e2b588b99e90dd80c3459594e857b  numpy-1.26.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b4d362e17bcb0011738c2d83e0a65ea8ce627057b2fdda37678f4374a382a137  numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b8c275f0ae90069496068c714387b4a0eba5d531aace269559ff2b43655edd58  numpy-1.26.3-cp39-cp39-musllinux_1_1_aarch64.whl
cc0743f0302b94f397a4a65a660d4cd24267439eb16493fb3caad2e4389bccbb  numpy-1.26.3-cp39-cp39-musllinux_1_1_x86_64.whl
9bc6d1a7f8cedd519c4b7b1156d98e051b726bf160715b769106661d567b3f03  numpy-1.26.3-cp39-cp39-win32.whl
867e3644e208c8922a3be26fc6bbf112a035f50f0a86497f98f228c50c607bb2  numpy-1.26.3-cp39-cp39-win_amd64.whl
3c67423b3703f8fbd90f5adaa37f85b5794d3366948efe9a5190a5f3a83fc34e  numpy-1.26.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
46f47ee566d98849323f01b349d58f2557f02167ee301e5e28809a8c0e27a2d0  numpy-1.26.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a8474703bffc65ca15853d5fd4d06b18138ae90c17c8d12169968e998e448bb5  numpy-1.26.3-pp39-pypy39_pp73-win_amd64.whl
697df43e2b6310ecc9d95f05d5ef20eacc09c7c4ecc9da3f235d39e71b7da1e4  numpy-1.26.3.tar.gz

v1.26.2: 1.26.2 release

Compare Source

NumPy 1.26.2 Release Notes

NumPy 1.26.2 is a maintenance release that fixes bugs and regressions
discovered after the 1.26.1 release. The 1.26.release series is the last
planned minor release series before NumPy 2.0. The Python versions
supported by this release are 3.9-3.12.

Contributors

A total of 13 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • @​stefan6419846
  • @​thalassemia +
  • Andrew Nelson
  • Charles Bousseau +
  • Charles Harris
  • Marcel Bargull +
  • Mark Mentovai +
  • Matti Picus
  • Nathan Goldbaum
  • Ralf Gommers
  • Sayed Adel
  • Sebastian Berg
  • William Ayd +

Pull requests merged

A total of 25 pull requests were merged for this release.

  • #​24814: MAINT: align test_dispatcher s390x targets with _umath_tests_mtargets
  • #​24929: MAINT: prepare 1.26.x for further development
  • #​24955: ENH: Add Cython enumeration for NPY_FR_GENERIC
  • #​24962: REL: Remove Python upper version from the release branch
  • #​24971: BLD: Use the correct Python interpreter when running tempita.py
  • #​24972: MAINT: Remove unhelpful error replacements from import_array()
  • #​24977: BLD: use classic linker on macOS, the new one in XCode 15 has...
  • #​25003: BLD: musllinux_aarch64 [wheel build]
  • #​25043: MAINT: Update mailmap
  • #​25049: MAINT: Update meson build infrastructure.
  • #​25071: MAINT: Split up .github/workflows to match main
  • #​25083: BUG: Backport fix build on ppc64 when the baseline set to Power9...
  • #​25093: BLD: Fix features.h detection for Meson builds [1.26.x Backport]
  • #​25095: BUG: Avoid intp conversion regression in Cython 3 (backport)
  • #​25107: CI: remove obsolete jobs, and move macOS and conda Azure jobs...
  • #​25108: CI: Add linux_qemu action and remove travis testing.
  • #​25112: MAINT: Update .spin/cmds.py from main.
  • #​25113: DOC: Visually divide main license and bundled licenses in wheels
  • #​25115: MAINT: Add missing noexcept to shuffle helpers
  • #​25116: DOC: Fix license identifier for OpenBLAS
  • #​25117: BLD: improve detection of Netlib libblas/libcblas/liblapack
  • #​25118: MAINT: Make bitfield integers unsigned
  • #​25119: BUG: Make n a long int for np.random.multinomial
  • #​25120: BLD: change default of the allow-noblas option to true.
  • #​25121: BUG: ensure passing np.dtype to itself doesn't crash

Checksums

MD5
1a5dc6b5b3bf11ad40a59eedb3b69fa1  numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl
4b741c6dfe4e6e22e34e9c5c788d4f04  numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl
2953687fb26e1dd8a2d1bb7109551fcd  numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ea9127a3a03f27fd101c62425c661d8d  numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7a6be7c6c1cc3e1ff73f64052fe30677  numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl
4f45d3f69f54fd1638609fde34c33a5c  numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl
f22f5ea26c86eb126ff502fff75d6c21  numpy-1.26.2-cp310-cp310-win32.whl
49871452488e1a55d15ab54c6f3e546e  numpy-1.26.2-cp310-cp310-win_amd64.whl
676740bf60fb1c8f5a6b31e00b9a4e9b  numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl
7170545dcc2a38a1c2386a6081043b64  numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl
feae1190c73d811e2e7ebcad4baf6edf  numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
03131896abade61b77e0f6e53abb988a  numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f160632f128a3fd46787aa02d8731fbb  numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl
014250db593d589b5533ef7127839c46  numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl
fb437346dac24d0cb23f5314db043c8b  numpy-1.26.2-cp311-cp311-win32.whl
7359adc233874898ea768cd4aec28bb3  numpy-1.26.2-cp311-cp311-win_amd64.whl
207a678bea75227428e7fb84d4dc457a  numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl
302ff6cc047a408cdf21981bd7b26056  numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl
7526faaea58c76aed395c7128dd6e14d  numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
28d3b1943d3a8ad4bbb2ae9da0a77cb9  numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d91f5b2bb2c931e41ae7c80ec7509a31  numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl
b2504d4239419f012c08fa1eab12f940  numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl
57944ba30adc07f33e83a9b45f5c625a  numpy-1.26.2-cp312-cp312-win32.whl
fe38cd95bbee405ce0cf51c8753a2676  numpy-1.26.2-cp312-cp312-win_amd64.whl
28e1bc3efaf89cf6f0a2b616c0e16401  numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl
9932ccff54855f12ee24f60528279bf1  numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl
b52c1e987074dad100ad234122a397b9  numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
1d1bd7e0d2a89ce795a9566a38ed9bb5  numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
01d2abfe8e9b35415efb791ac6c5865e  numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl
5a6d6ac287ebd93a221e59590329e202  numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl
4e4e4d8cf661a8d2838ee700fabae87e  numpy-1.26.2-cp39-cp39-win32.whl
b8e52ecac110471502686abbdf774b78  numpy-1.26.2-cp39-cp39-win_amd64.whl
aed2d2914be293f60fedda360b64abf8  numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
6bd88e0f33933445d0e18c1a850f60e0  numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
010aeb2a50af0af1f7ef56f76f8cf463  numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl
8f6446a32e47953a03f8fe8533e21e98  numpy-1.26.2.tar.gz
SHA256
3703fc9258a4a122d17043e57b35e5ef1c5a5837c3db8be396c82e04c1cf9b0f  numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl
cc392fdcbd21d4be6ae1bb4475a03ce3b025cd49a9be5345d76d7585aea69440  numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl
36340109af8da8805d8851ef1d74761b3b88e81a9bd80b290bbfed61bd2b4f75  numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bcc008217145b3d77abd3e4d5ef586e3bdfba8fe17940769f8aa09b99e856c00  numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3ced40d4e9e18242f70dd02d739e44698df3dcb010d31f495ff00a31ef6014fe  numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl
b272d4cecc32c9e19911891446b72e986157e6a1809b7b56518b4f3755267523  numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl
22f8fc02fdbc829e7a8c578dd8d2e15a9074b630d4da29cda483337e300e3ee9  numpy-1.26.2-cp310-cp310-win32.whl
26c9d33f8e8b846d5a65dd068c14e04018d05533b348d9eaeef6c1bd787f9919  numpy-1.26.2-cp310-cp310-win_amd64.whl
b96e7b9c624ef3ae2ae0e04fa9b460f6b9f17ad8b4bec6d7756510f1f6c0c841  numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl
aa18428111fb9a591d7a9cc1b48150097ba6a7e8299fb56bdf574df650e7d1f1  numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl
06fa1ed84aa60ea6ef9f91ba57b5ed963c3729534e6e54055fc151fad0423f0a  numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
96ca5482c3dbdd051bcd1fce8034603d6ebfc125a7bd59f55b40d8f5d246832b  numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
854ab91a2906ef29dc3925a064fcd365c7b4da743f84b123002f6139bcb3f8a7  numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl
f43740ab089277d403aa07567be138fc2a89d4d9892d113b76153e0e412409f8  numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl
a2bbc29fcb1771cd7b7425f98b05307776a6baf43035d3b80c4b0f29e9545186  numpy-1.26.2-cp311-cp311-win32.whl
2b3fca8a5b00184828d12b073af4d0fc5fdd94b1632c2477526f6bd7842d700d  numpy-1.26.2-cp311-cp311-win_amd64.whl
a4cd6ed4a339c21f1d1b0fdf13426cb3b284555c27ac2f156dfdaaa7e16bfab0  numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl
5d5244aabd6ed7f312268b9247be47343a654ebea52a60f002dc70c769048e75  numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl
6a3cdb4d9c70e6b8c0814239ead47da00934666f668426fc6e94cce869e13fd7  numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
aa317b2325f7aa0a9471663e6093c210cb2ae9c0ad824732b307d2c51983d5b6  numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
174a8880739c16c925799c018f3f55b8130c1f7c8e75ab0a6fa9d41cab092fd6  numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl
f79b231bf5c16b1f39c7f4875e1ded36abee1591e98742b05d8a0fb55d8a3eec  numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl
4a06263321dfd3598cacb252f51e521a8cb4b6df471bb12a7ee5cbab20ea9167  numpy-1.26.2-cp312-cp312-win32.whl
b04f5dc6b3efdaab541f7857351aac359e6ae3c126e2edb376929bd3b7f92d7e  numpy-1.26.2-cp312-cp312-win_amd64.whl
4eb8df4bf8d3d90d091e0146f6c28492b0be84da3e409ebef54349f71ed271ef  numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl
1a13860fdcd95de7cf58bd6f8bc5a5ef81c0b0625eb2c9a783948847abbef2c2  numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl
64308ebc366a8ed63fd0bf426b6a9468060962f1a4339ab1074c228fa6ade8e3  numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
baf8aab04a2c0e859da118f0b38617e5ee65d75b83795055fb66c0d5e9e9b818  numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d73a3abcac238250091b11caef9ad12413dab01669511779bc9b29261dd50210  numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl
b361d369fc7e5e1714cf827b731ca32bff8d411212fccd29ad98ad622449cc36  numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl
bd3f0091e845164a20bd5a326860c840fe2af79fa12e0469a12768a3ec578d80  numpy-1.26.2-cp39-cp39-win32.whl
2beef57fb031dcc0dc8fa4fe297a742027b954949cabb52a2a376c144e5e6060  numpy-1.26.2-cp39-cp39-win_amd64.whl
1cc3d5029a30fb5f06704ad6b23b35e11309491c999838c31f124fee32107c79  numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
94cc3c222bb9fb5a12e334d0479b97bb2df446fbe622b470928f5284ffca3f8d  numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fe6b44fb8fcdf7eda4ef4461b97b3f63c466b27ab151bec2366db8b197387841  numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl
f65738447676ab5777f11e6bbbdb8ce11b785e105f690bc45966574816b6d3ea  numpy-1.26.2.tar.gz

v1.26.1

Compare Source

NumPy 1.26.1 Release Notes

NumPy 1.26.1 is a maintenance release that fixes bugs and regressions
discovered after the 1.26.0 release. In addition, it adds new
functionality for detecting BLAS and LAPACK when building from source.
Highlights are:

  • Improved detection of BLAS and LAPACK libraries for meson builds
  • Pickle compatibility with the upcoming NumPy 2.0.

The 1.26.release series is the last planned minor release series before
NumPy 2.0. The Python versions supported by this release are 3.9-3.12.

Build system changes
Improved BLAS/LAPACK detection and control

Auto-detection for a number of BLAS and LAPACK is now implemented for
Meson. By default, the build system will try to detect MKL, Accelerate
(on macOS >=13.3), OpenBLAS, FlexiBLAS, BLIS and reference BLAS/LAPACK.
Support for MKL was significantly improved, and support for FlexiBLAS
was added.

New command-line flags are available to further control the selection of
the BLAS and LAPACK libraries to build against.

To select a specific library, use the config-settings interface via
pip or pypa/build. E.g., to select libblas/liblapack, use:

$ pip install numpy -Csetup-args=-Dblas=blas -Csetup-args=-Dlapack=lapack
$ # OR
$ python -m build . -Csetup-args=-Dblas=blas -Csetup-args=-Dlapack=lapack

This works not only for the libraries named above, but for any library
that Meson is able to detect with the given name through pkg-config or
CMake.

Besides -Dblas and -Dlapack, a number of other new flags are
available to control BLAS/LAPACK selection and behavior:

  • -Dblas-order and -Dlapack-order: a list of library names to
    search for in order, overriding the default search order.
  • -Duse-ilp64: if set to true, use ILP64 (64-bit integer) BLAS and
    LAPACK. Note that with this release, ILP64 support has been extended
    to include MKL and FlexiBLAS. OpenBLAS and Accelerate were supported
    in previous releases.
  • -Dallow-noblas: if set to true, allow NumPy to build with its
    internal (very slow) fallback routines instead of linking against an
    external BLAS/LAPACK library. The default for this flag may be
    changed to ``true`` in a future 1.26.x release, however for
    1.26.1 we'd prefer to keep it as ``false`` because if failures
    to detect an installed library are happening, we'd like a bug
    report for that, so we can quickly assess whether the new
    auto-detection machinery needs further improvements.
  • -Dmkl-threading: to select the threading layer for MKL. There are
    four options: seq, iomp, gomp and tbb. The default is
    auto, which selects from those four as appropriate given the
    version of MKL selected.
  • -Dblas-symbol-suffix: manually select the symbol suffix to use for
    the library - should only be needed for linking against libraries
    built in a non-standard way.
New features
numpy._core submodule stubs

numpy._core submodule stubs were added to provide compatibility with
pickled arrays created using NumPy 2.0 when running Numpy 1.26.

Contributors

A total of 13 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Andrew Nelson
  • Anton Prosekin +
  • Charles Harris
  • Chongyun Lee +
  • Ivan A. Melnikov +
  • Jake Lishman +
  • Mahder Gebremedhin +
  • Mateusz Sokół
  • Matti Picus
  • Munira Alduraibi +
  • Ralf Gommers
  • Rohit Goswami
  • Sayed Adel
Pull requests merged

A total of 20 pull requests were merged for this release.

  • #​24742: MAINT: Update cibuildwheel version
  • #​24748: MAINT: fix version string in wheels built with setup.py
  • #​24771: BLD, BUG: Fix build failure for host flags e.g. -march=native...
  • #​24773: DOC: Updated the f2py docs to remove a note on -fimplicit-none
  • #​24776: BUG: Fix SIMD f32 trunc test on s390x when baseline is none
  • #​24785: BLD: add libquadmath to licences and other tweaks (#​24753)
  • #​24786: MAINT: Activate use-compute-credits for Cirrus.
  • #​24803: BLD: updated vendored-meson/meson for mips64 fix
  • #​24804: MAINT: fix licence path win
  • #​24813: BUG: Fix order of Windows OS detection macros.
  • #​24831: BUG, SIMD: use scalar cmul on bad Apple clang x86_64 (#​24828)
  • #​24840: BUG: Fix DATA statements for f2py
  • #​24870: API: Add NumpyUnpickler for backporting
  • #​24872: MAINT: Xfail test failing on PyPy.
  • #​24879: BLD: fix math func feature checks, fix FreeBSD build, add CI...
  • #​24899: ENH: meson: implement BLAS/LAPACK auto-detection and many CI...
  • #​24902: DOC: add a 1.26.1 release notes section for BLAS/LAPACK build...
  • #​24906: MAINT: Backport numpy._core stubs. Remove NumpyUnpickler
  • #​24911: MAINT: Bump pypa/cibuildwheel from 2.16.1 to 2.16.2
  • #​24912: BUG: loongarch doesn't use REAL(10)
Checksums
MD5
bda38de1a047dd9fdddae16c0d9fb358  numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl
196d2e39047da64ab28e177760c95461  numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl
9d25010a7bf50e624d2fed742790afbd  numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9b22fa3d030807f0708007d9c0659f65  numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
eea626b8b930acb4b32302a9e95714f5  numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl
3c40ef068f50d2ac2913c5b9fa1233fa  numpy-1.26.1-cp310-cp310-win32.whl
315c251d2f284af25761a37ce6dd4d10  numpy-1.26.1-cp310-cp310-win_amd64.whl
ebdd5046937df50e9f54a6d38c5775dd  numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl
682f9beebe8547f205d6cdc8ff96a984  numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl
e86da9b6040ea88b3835c4d8f8578658  numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ebcb6cf7f64454215e29d8a89829c8e1  numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a8c89e13dc9a63712104e2fb06fb63a6  numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl
339795930404988dbc664ff4cc72b399  numpy-1.26.1-cp311-cp311-win32.whl
4ef5e1bdd7726c19615843f5ac72e618  numpy-1.26.1-cp311-cp311-win_amd64.whl
3aad6bc72db50e9cc88aa5813e8f35bd  numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl
fd62f65ae7798dbda9a3f7af7aa5c8db  numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl
104d939e080f1baf0a56aed1de0e79e3  numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c44b56c96097f910bbec1420abcf3db5  numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1dce230368ae5fc47dd0fe8de8ff771d  numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl
d93338e7d60e1d294ca326450e99806b  numpy-1.26.1-cp312-cp312-win32.whl
a1832f46521335c1ee4c56dbf12e600b  numpy-1.26.1-cp312-cp312-win_amd64.whl
946fbb0b6caca9258985495532d3f9ab  numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl
78c2ab13d395d67d90bcd6583a6f61a8  numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl
0a9d80d8b646abf4ffe51fff3e075d10  numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0229ba8145d4f58500873b540a55d60e  numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9179fc57c03260374c86e18867c24463  numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl
246a3103fdbe5d891d7a8aee28875a26  numpy-1.26.1-cp39-cp39-win32.whl
4589dcb7f754fade6ea3946416bee638  numpy-1.26.1-cp39-cp39-win_amd64.whl
3af340d5487a6c045f00fe5eb889957c  numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
28aece4f1ceb92ec463aa353d4a91c8b  numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
bbd0461a1e31017b05509e9971b3478e  numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl
2d770f4c281d405b690c4bcb3dbe99e2  numpy-1.26.1.tar.gz
SHA256
82e871307a6331b5f09efda3c22e03c095d957f04bf6bc1804f30048d0e5e7af  numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl
cdd9ec98f0063d93baeb01aad472a1a0840dee302842a2746a7a8e92968f9575  numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl
d78f269e0c4fd365fc2992c00353e4530d274ba68f15e968d8bc3c69ce5f5244  numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8ab9163ca8aeb7fd32fe93866490654d2f7dda4e61bc6297bf72ce07fdc02f67  numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
78ca54b2f9daffa5f323f34cdf21e1d9779a54073f0018a3094ab907938331a2  numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl
d1cfc92db6af1fd37a7bb58e55c8383b4aa1ba23d012bdbba26b4bcca45ac297  numpy-1.26.1-cp310-cp310-win32.whl
d2984cb6caaf05294b8466966627e80bf6c7afd273279077679cb010acb0e5ab  numpy-1.26.1-cp310-cp310-win_amd64.whl
cd7837b2b734ca72959a1caf3309457a318c934abef7a43a14bb984e574bbb9a  numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl
1c59c046c31a43310ad0199d6299e59f57a289e22f0f36951ced1c9eac3665b9  numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl
d58e8c51a7cf43090d124d5073bc29ab2755822181fcad978b12e144e5e5a4b3  numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6081aed64714a18c72b168a9276095ef9155dd7888b9e74b5987808f0dd0a974  numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
97e5d6a9f0702c2863aaabf19f0d1b6c2628fbe476438ce0b5ce06e83085064c  numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl
b9d45d1dbb9de84894cc50efece5b09939752a2d75aab3a8b0cef6f3a35ecd6b  numpy-1.26.1-cp311-cp311-win32.whl
3649d566e2fc067597125428db15d60eb42a4e0897fc48d28cb75dc2e0454e53  numpy-1.26.1-cp311-cp311-win_amd64.whl
1d1bd82d539607951cac963388534da3b7ea0e18b149a53cf883d8f699178c0f  numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl
afd5ced4e5a96dac6725daeb5242a35494243f2239244fad10a90ce58b071d24  numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl
a03fb25610ef560a6201ff06df4f8105292ba56e7cdd196ea350d123fc32e24e  numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dcfaf015b79d1f9f9c9fd0731a907407dc3e45769262d657d754c3a028586124  numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e509cbc488c735b43b5ffea175235cec24bbc57b227ef1acc691725beb230d1c  numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl
af22f3d8e228d84d1c0c44c1fbdeb80f97a15a0abe4f080960393a00db733b66  numpy-1.26.1-cp312-cp312-win32.whl
9f42284ebf91bdf32fafac29d29d4c07e5e9d1af862ea73686581773ef9e73a7  numpy-1.26.1-cp312-cp312-win_amd64.whl
bb894accfd16b867d8643fc2ba6c8617c78ba2828051e9a69511644ce86ce83e  numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl
e44ccb93f30c75dfc0c3aa3ce38f33486a75ec9abadabd4e59f114994a9c4617  numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl
9696aa2e35cc41e398a6d42d147cf326f8f9d81befcb399bc1ed7ffea339b64e  numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a5b411040beead47a228bde3b2241100454a6abde9df139ed087bd73fc0a4908  numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1e11668d6f756ca5ef534b5be8653d16c5352cbb210a5c2a79ff288e937010d5  numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl
d1d2c6b7dd618c41e202c59c1413ef9b2c8e8a15f5039e344af64195459e3104  numpy-1.26.1-cp39-cp39-win32.whl
59227c981d43425ca5e5c01094d59eb14e8772ce6975d4b2fc1e106a833d5ae2  numpy-1.26.1-cp39-cp39-win_amd64.whl
06934e1a22c54636a059215d6da99e23286424f316fddd979f5071093b648668  numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
76ff661a867d9272cd2a99eed002470f46dbe0943a5ffd140f49be84f68ffc42  numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6965888d65d2848e8768824ca8288db0a81263c1efccec881cb35a0d805fcd2f  numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl
c8c6c72d4a9f831f328efb1312642a1cafafaa88981d9ab76368d50d07d93cbe  numpy-1.26.1.tar.gz

v1.26.0

Compare Source

NumPy 1.26.0 Release Notes

The NumPy 1.26.0 release is a continuation of the 1.25.x release cycle
with the addition of Python 3.12.0 support. Python 3.12 dropped
distutils, consequently supporting it required finding a replacement for
the setup.py/distutils based build system NumPy was using. We have
chosen to use the Meson build system instead, and this is the first
NumPy release supporting it. This is also the first release that
supports Cython 3.0 in addition to retaining 0.29.X compatibility.
Supporting those two upgrades was a large project, over 100 files have
been touched in this release. The changelog doesn't capture the full
extent of the work, special thanks to Ralf Gommers, Sayed Adel, Stéfan
van der Walt, and Matti Picus who did much of the work in the main
development branch.

The highlights of this release are:

  • Python 3.12.0 support.
  • Cython 3.0.0 compatibility.
  • Use of the Meson build system
  • Updated SIMD support
  • f2py fixes, meson and bind(x) support
  • Support for the updated Accelerate BLAS/LAPACK library

The Python versions supported in this release are 3.9-3.12.

New Features

Array API v2022.12 support in numpy.array_api

numpy.array_api now full supports the
v2022.12 version of the array API standard. Note that this does not
yet include the optional fft extension in the standard.

(gh-23789)

Support for the updated Accelerate BLAS/LAPACK library

Support for the updated Accelerate BLAS/LAPACK library, including ILP64
(64-bit integer) support, in macOS 13.3 has been added. This brings
arm64 support, and significant performance improvements of up to 10x for
commonly used linear algebra operations. When Accelerate is selected at
build time, the 13.3+ version will automatically be used if available.

(gh-24053)

meson backend for f2py

f2py in compile mode (i.e. f2py -c) now accepts the
--backend meson option. This is the default option for Python 3.12
on-wards. Older versions will still default to --backend distutils.

To support this in realistic use-cases, in compile mode f2py takes a
--dep flag one or many times which maps to dependency() calls in the
meson backend, and does nothing in the distutils backend.

There are no changes for users of f2py only as a code generator, i.e.
without -c.

(gh-24532)

bind(c) support for f2py

Both functions and subroutines can be annotated with bind(c). f2py
will handle both the correct type mapping, and preserve the unique label
for other C interfaces.

Note: bind(c, name = 'routine_name_other_than_fortran_routine') is
not honored by the f2py bindings by design, since bind(c) with the
name is meant to guarantee only the same name in C and Fortran,
not in Python and Fortran.

(gh-24555)

Improvements

iso_c_binding support for f2py

Previously, users would have to define their own custom f2cmap file to
use type mappings defined by the Fortran2003 iso_c_binding intrinsic
module. These type maps are now natively supported by f2py

(gh-24555)

Build system changes

In this release, NumPy has switched to Meson as the build system and
meson-python as the build backend. Installing NumPy or building a wheel
can be done with standard tools like pip and pypa/build. The
following are supported:

  • Regular installs: pip install numpy or (in a cloned repo)
    pip install .
  • Building a wheel: python -m build (preferred), or pip wheel .
  • Editable installs: pip install -e . --no-build-isolation
  • Development builds through the custom CLI implemented with
    spin: spin build.

All the regular pip and pypa/build flags (e.g.,
--no-build-isolation) should work as expected.

NumPy-specific build customization

Many of the NumPy-specific ways of customizing builds have changed. The
NPY_* environment variables which control BLAS/LAPACK, SIMD,
threading, and other such options are no longer supported, nor is a
site.cfg file to select BLAS and LAPACK. Instead, there are
command-line flags that can be passed to the build via pip/build's
config-settings interface. These flags are all listed in the
meson_options.txt file in the root of the repo. Detailed documented
will be available before the final 1.26.0 release; for now please see
the SciPy "building from source" docs
since most build customization works in an almost identical way in SciPy as it
does in NumPy.

Build dependencies

While the runtime dependencies of NumPy have not changed, the build
dependencies have. Because we temporarily vendor Meson and meson-python,
there are several new dependencies - please see the [build-system]
section of pyproject.toml for details.

Troubleshooting

This build system change is quite large. In case of unexpected issues,
it is still possible to use a setup.py-based build as a temporary
workaround (on Python 3.9-3.11, not 3.12), by copying
pyproject.toml.setuppy to pyproject.toml. However, please open an
issue with details on the NumPy issue tracker. We aim to phase out
setup.py builds as soon as possible, and therefore would like to see
all potential blockers surfaced early on in the 1.26.0 release cycle.

Contributors

A total of 20 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • @​DWesl
  • Albert Steppi +
  • Bas van Beek
  • Charles Harris
  • Developer-Ecosystem-Engineering
  • Filipe Laíns +
  • Jake Vanderplas
  • Liang Yan +
  • Marten van Kerkwijk
  • Matti Picus
  • Melissa Weber Mendonça
  • Namami Shanker
  • Nathan Goldbaum
  • Ralf Gommers
  • Rohit Goswami
  • Sayed Adel
  • Sebastian Berg
  • Stefan van der Walt
  • Tyler Reddy
  • Warren Weckesser

Pull requests merged

A total of 59 pull requests were merged for this release.

  • #​24305: MAINT: Prepare 1.26.x branch for development
  • #​24308: MAINT: Massive update of files from main for numpy 1.26
  • #​24322: CI: fix wheel builds on the 1.26.x branch
  • #​24326: BLD: update openblas to newer version
  • #​24327: TYP: Trim down the _NestedSequence.__getitem__ signature
  • #​24328: BUG: fix choose refcount leak
  • #​24337: TST: fix running the test suite in builds without BLAS/LAPACK
  • #​24338: BUG: random: Fix generation of nan by dirichlet.
  • #​24340: MAINT: Dependabot updates from main
  • #​24342: MAINT: Add back NPY_RUN_MYPY_IN_TESTSUITE=1
  • #​24353: MAINT: Update extbuild.py from main.
  • #​24356: TST: fix distutils tests for

Configuration

📅 Schedule: Branch creation - At any time (no schedule defined), Automerge - At any time (no schedule defined).

🚦 Automerge: Disabled by config. Please merge this manually once you are satisfied.

Rebasing: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.

🔕 Ignore: Close this PR and you won't be reminded about this update again.


  • If you want to rebase/retry this PR, check this box

This PR was generated by Mend Renovate. View the repository job log.

@renovate renovate bot changed the title chore(deps): update dependency numpy to v1.26.4 chore(deps): update dependency numpy to v1.26.4 - autoclosed Dec 19, 2024
@renovate renovate bot closed this Dec 19, 2024
@renovate renovate bot deleted the renovate/numpy-1.x branch December 19, 2024 13:43
@renovate renovate bot changed the title chore(deps): update dependency numpy to v1.26.4 - autoclosed chore(deps): update dependency numpy to v1.26.4 Dec 22, 2024
@renovate renovate bot reopened this Dec 22, 2024
@renovate renovate bot force-pushed the renovate/numpy-1.x branch from 72e3d7c to 5688daa Compare December 22, 2024 16:29
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

0 participants