Skip to content

问答基准测试集是实验编程(code-2-art)社群开发的独特数据集,旨在评估人工智能模型在实际应用场景中的问答能力。与传统基准测试不同,这些数据集强调实用性和创造性,而非标准化评估。

Notifications You must be signed in to change notification settings

code-2-art/ArtifactQA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 

Repository files navigation

实验编程社群问答基准测试集 | Code-2-Art Community Q&A Benchmark Dataset

中文介绍

问答基准测试集是实验编程(code-2-art)社群开发的独特数据集,旨在评估人工智能模型在实际应用场景中的问答能力。与传统基准测试不同,这些数据集强调实用性和创造性,而非标准化评估。


测试使用的问题

answer

答题基本信息,很文件夹中相应文件


核心特点

  • 真实需求驱动: 由社群成员根据实际使用场景和需求整理
  • 开放评估: 不设预定标准答案,关注AI回应的实用价值和创造性
  • 技术无限制: 允许使用系统提示词等技巧,模拟真实应用环境
  • 能力探索: 测试AI在不受限条件下的真实能力边界
  • 社群协作: 集体贡献问题和评估反馈,形成进化型测试集

应用场景

  1. 提示词工程交流: 分享和比较不同提示策略的效果
  2. 真实能力评估: 测试模型在实际任务中的表现
  3. 应用开发参考: 为创新应用提供性能参考
  4. 社群学习: 集体学习和改进AI使用方法
  5. 跨界实验: 探索AI在艺术、设计、编程交叉领域的应用

数据组织方式

  • 问题库: 按应用场景和难度分类的真实问题集
  • 答题库: 记录不同模型、不同提示策略下的回答
  • 评估记录: 社群成员对回答效果的多维度评价
  • 提示词库: 有效提示词的收集和分类

评估维度

  • 创造性: 解决方案的新颖性和独特视角
  • 实用性: 解决实际问题的有效程度
  • 灵活性: 适应不同表述和需求变化的能力
  • 交互体验: 回答的连贯性、清晰度和参与感
  • 社群反馈: 实际使用者的主观评价和改进建议

English Introduction

The Q&A Benchmark Dataset is a unique collection developed by the Code-2-Art experimental programming community to evaluate AI models' question-answering capabilities in practical application scenarios. Unlike traditional benchmarks, these datasets emphasize utility and creativity rather than standardized assessment.

Key Characteristics

  • Real-need Driven: Compiled by community members based on actual usage scenarios
  • Open Evaluation: No predetermined standard answers, focusing on practical value and creativity
  • Technique Unrestricted: Allows system prompts and other techniques, simulating real application environments
  • Capability Exploration: Tests AI's true capabilities under unrestricted conditions
  • Community Collaboration: Collective contribution of questions and assessment feedback, forming an evolving test set

Application Scenarios

  1. Prompt Engineering Exchange: Sharing and comparing different prompting strategies
  2. Real Capability Assessment: Testing model performance in actual tasks
  3. Application Development Reference: Providing performance references for innovative applications
  4. Community Learning: Collective learning and improvement of AI usage methods
  5. Interdisciplinary Experiments: Exploring AI applications in art, design, and programming intersections

Data Organization

  • Question Repository: Real-world questions categorized by application scenarios and difficulty
  • Answer Collection: Responses recorded under different models and prompting strategies
  • Evaluation Records: Multi-dimensional assessments from community members
  • Prompt Library: Collection and classification of effective prompts

Evaluation Dimensions

  • Creativity: Novelty of solutions and unique perspectives
  • Practicality: Effectiveness in solving real problems
  • Flexibility: Ability to adapt to different phrasings and changing requirements
  • Interaction Experience: Coherence, clarity, and engagement of responses
  • Community Feedback: Subjective evaluations and improvement suggestions from actual users

这个社群驱动的测试集代表了一种新型的AI评估方法,它不仅关注模型的技术能力,更注重实际应用价值和创新可能性,为AI在实验编程与艺术创作领域的发展提供了独特视角。

This community-driven test set represents a new approach to AI evaluation that focuses not just on technical capabilities but on practical application value and innovative possibilities, providing a unique perspective for AI development in experimental programming and artistic creation.

About

问答基准测试集是实验编程(code-2-art)社群开发的独特数据集,旨在评估人工智能模型在实际应用场景中的问答能力。与传统基准测试不同,这些数据集强调实用性和创造性,而非标准化评估。

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published