Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adapt to the new pycolmap interface #446

Draft
wants to merge 7 commits into
base: master
Choose a base branch
from
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion hloc/localize_inloc.py
Original file line number Diff line number Diff line change
@@ -110,7 +110,9 @@ def pose_from_cluster(dataset_dir, q, retrieved, feature_file, match_file, skip=
"height": height,
"params": [focal_length, cx, cy],
}
ret = pycolmap.absolute_pose_estimation(all_mkpq, all_mkp3d, cfg, 48.00)
estimation_options = pycolmap.AbsolutePoseEstimationOptions()
estimation_options.ransac.max_error = 48
ret = pycolmap.estimate_and_refine_absolute_pose(all_mkpq, all_mkp3d, cfg, estimation_options)
ret["cfg"] = cfg
return ret, all_mkpq, all_mkpr, all_mkp3d, all_indices, num_matches

2 changes: 1 addition & 1 deletion hloc/localize_sfm.py
Original file line number Diff line number Diff line change
@@ -58,7 +58,7 @@ def __init__(self, reconstruction, config=None):
def localize(self, points2D_all, points2D_idxs, points3D_id, query_camera):
points2D = points2D_all[points2D_idxs]
points3D = [self.reconstruction.points3D[j].xyz for j in points3D_id]
ret = pycolmap.absolute_pose_estimation(
ret = pycolmap.estimate_and_refine_absolute_pose(
points2D,
points3D,
query_camera,
22 changes: 20 additions & 2 deletions hloc/pipelines/7Scenes/create_gt_sfm.py
Original file line number Diff line number Diff line change
@@ -11,7 +11,16 @@

def scene_coordinates(p2D, R_w2c, t_w2c, depth, camera):
assert len(depth) == len(p2D)
p2D_norm = np.stack(pycolmap.Camera(camera._asdict()).image_to_world(p2D))
pycolmap_camera = pycolmap.Camera(
{
"camera_id": camera.id,
"model": camera.model,
"width": camera.width,
"height": camera.height,
"params": camera.params,
}
)
p2D_norm = pycolmap_camera.cam_from_img(p2D)
p2D_h = np.concatenate([p2D_norm, np.ones_like(p2D_norm[:, :1])], 1)
p3D_c = p2D_h * depth[:, None]
p3D_w = (p3D_c - t_w2c) @ R_w2c
@@ -52,7 +61,16 @@ def project_to_image(p3D, R, t, camera, eps: float = 1e-4, pad: int = 1):
p3D = (p3D @ R.T) + t
visible = p3D[:, -1] >= eps # keep points in front of the camera
p2D_norm = p3D[:, :-1] / p3D[:, -1:].clip(min=eps)
p2D = np.stack(pycolmap.Camera(camera._asdict()).world_to_image(p2D_norm))
pycolmap_camera = pycolmap.Camera(
{
"camera_id": camera.id,
"model": camera.model,
"width": camera.width,
"height": camera.height,
"params": camera.params,
}
)
p2D = pycolmap_camera.img_from_cam(p2D_norm)
size = np.array([camera.width - pad - 1, camera.height - pad - 1])
valid = np.all((p2D >= pad) & (p2D <= size), -1)
valid &= visible
2 changes: 1 addition & 1 deletion hloc/utils/geometry.py
Original file line number Diff line number Diff line change
@@ -7,7 +7,7 @@ def to_homogeneous(p):


def compute_epipolar_errors(j_from_i: pycolmap.Rigid3d, p2d_i, p2d_j):
j_E_i = j_from_i.essential_matrix()
j_E_i = pycolmap.essential_matrix_from_pose(j_from_i)
l2d_j = to_homogeneous(p2d_i) @ j_E_i.T
l2d_i = to_homogeneous(p2d_j) @ j_E_i
dist = np.abs(np.sum(to_homogeneous(p2d_i) * l2d_i, axis=1))
4 changes: 2 additions & 2 deletions hloc/visualization.py
Original file line number Diff line number Diff line change
@@ -17,7 +17,7 @@ def visualize_sfm_2d(
reconstruction = pycolmap.Reconstruction(reconstruction)

if not selected:
image_ids = reconstruction.reg_image_ids()
image_ids = list(reconstruction.reg_image_ids())
selected = random.Random(seed).sample(image_ids, min(n, len(image_ids)))

for i in selected:
@@ -110,7 +110,7 @@ def visualize_loc_from_log(
# select the first, largest cluster if the localization failed
loc = loc["log_clusters"][loc["best_cluster"] or 0]

inliers = np.array(loc["PnP_ret"]["inliers"])
inliers = np.array(loc["PnP_ret"]["inlier_mask"])
mkp_q = loc["keypoints_query"]
n = len(loc["db"])
if reconstruction is not None:
2 changes: 1 addition & 1 deletion requirements.txt
Original file line number Diff line number Diff line change
@@ -7,7 +7,7 @@ matplotlib
plotly
scipy
h5py
pycolmap>=0.6.0
pycolmap>=3.11.1
kornia>=0.6.11
gdown
lightglue @ git+https://github.com/cvg/LightGlue