Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
181 changes: 179 additions & 2 deletions lab-python-data-structures.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -50,11 +50,188 @@
"\n",
"Solve the exercise by implementing the steps using the Python concepts of lists, dictionaries, sets, and basic input/output operations. "
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# PUNTO 1\n",
"products = [\"t-shirt\", \"mug\", \"hat\", \"book\", \"keychain\"]\n",
"# PUNTO 2\n",
"inventory = {}"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'t-shirt': 2, 'mug': 2, 'hat': 2, 'book': 2, 'keychain': 2}\n"
]
}
],
"source": [
"# PUNTO 3\n",
"numero_camisetas = int(input(\"Introduzca el número de camisetas:\"))\n",
"inventory [\"t-shirt\"] = numero_camisetas\n",
"numero_tazas = int(input(\"Introduzca el número de tazas:\"))\n",
"inventory [\"mug\"] = numero_tazas\n",
"numero_sombreros = int(input(\"Introduzca el número de sombreros:\"))\n",
"inventory [\"hat\"] = numero_sombreros\n",
"numero_libros = int(input(\"Introduzca el número de libros:\"))\n",
"inventory [\"book\"] = numero_libros\n",
"numero_llaveros = int(input(\"Introduzca el número de llaveros:\"))\n",
"inventory [\"keychain\"] = numero_llaveros\n",
"print (inventory)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"#PUNTO 4\n",
"customer_orders = set()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Artículos elegidos: {'mug', 'hat', 'keychain'}\n"
]
}
],
"source": [
"#PUNTO 5\n",
"item1 = input(\"Por favor, escoja tres: t-shirt, mug, hat, book o keychain: \")\n",
"item2 = input(\"Segunda elección: \")\n",
"item3 = input(\"Tercera elección: \")\n",
"customer_orders.add(item1)\n",
"customer_orders.add(item2)\n",
"customer_orders.add(item3)\n",
"print(\"Artículos elegidos:\", customer_orders)\n"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"#PUNTO 6\n",
"total_products_ordered=len(customer_orders)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"60.0\n",
"(3, 60.0)\n"
]
}
],
"source": [
"#PUNTO 7\n",
"customer_percentage = len(customer_orders)/len(products) * 100\n",
"print (customer_percentage)\n",
"order_status= (len(customer_orders), customer_percentage )\n",
"print (order_status)\n"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Order Statistics:\n",
"Total Products Ordered: 3\n",
"Percentage of Products Ordered: 60.0%\n"
]
}
],
"source": [
"#PUNTO 8\n",
"print(\"Order Statistics:\")\n",
"print(f\"Total Products Ordered: {total_products_ordered}\")\n",
"print(f\"Percentage of Products Ordered: {customer_percentage}%\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'t-shirt': 1, 'mug': 1, 'hat': 1, 'book': 1, 'keychain': 1}\n"
]
}
],
"source": [
"#punto 9\n",
"inventory [\"t-shirt\"] += -1\n",
"inventory [\"mug\"] += -1\n",
"inventory [\"hat\"] += -1\n",
"inventory [\"book\"] += -1\n",
"inventory [\"keychain\"] += -1\n",
"print(inventory)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"t-shirt: 1\n",
"mug: 1\n",
"hat: 1\n",
"book: 1\n",
"keychain: 1\n"
]
}
],
"source": [
"#PUNTO 10\n",
"print(f\"t-shirt: {inventory[\"t-shirt\"]}\")\n",
"print(f\"mug: {inventory[\"mug\"]}\")\n",
"print(f\"hat: {inventory[\"hat\"]}\")\n",
"print(f\"book: {inventory[\"book\"]}\")\n",
"print(f\"keychain: {inventory[\"keychain\"]}\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "base",
"language": "python",
"name": "python3"
},
Expand All @@ -68,7 +245,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
"version": "3.13.5"
}
},
"nbformat": 4,
Expand Down