Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
235 changes: 234 additions & 1 deletion lab-python-data-structures.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,239 @@
"\n",
"Solve the exercise by implementing the steps using the Python concepts of lists, dictionaries, sets, and basic input/output operations. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"products=[\"t-shirt\", \"mug\", \"hat\", \"book\", \"keychain\"]\n",
"inventory={}\n",
"user_input_t_shirt=int(input(\"Enter quantity of t-shirts: \"))\n",
"user_input_mug=int(input(\"Enter quantity of mug: \"))\n",
"user_input_hat=int(input(\"Enter quantity of hat: \"))\n",
"user_input_book=int(input(\"Enter quantity of book: \"))\n",
"user_input_keychain=int(input(\"Enter quantity of keychain: \"))\n",
"inventory={\"t-shirt\":user_input_t_shirt, \"mug\":user_input_mug, \"hat\":user_input_hat, \"book\":user_input_book, \"keychain\":user_input_keychain}\n",
"inventory\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
"Enter your preference from the product list: hat\n",
"Enter your preference from the product list: book\n",
"Enter your preference from the product list: mug\n"
]
},
{
"data": {
"text/plain": [
"{'book', 'hat', 'mug'}"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"customer_orders={}\n",
"customer_preference_1=input(\"Enter your preference from the product list: \")\n",
"customer_preference_2=input(\"Enter your preference from the product list: \")\n",
"customer_preference_3=input(\"Enter your preference from the product list: \")\n",
"customer_orders={customer_preference_1, customer_preference_2, customer_preference_3}\n",
"customer_orders"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"total_products_ordered=len(customer_orders)\n",
"total_products_ordered"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'inventory' is not defined",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[1], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m total_products_available\u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlen\u001b[39m(inventory)\n\u001b[0;32m 2\u001b[0m percentage_ordered\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mround\u001b[39m((total_products_ordered\u001b[38;5;241m/\u001b[39mtotal_products_available)\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m100\u001b[39m)\n\u001b[0;32m 3\u001b[0m percentage_ordered\n",
"\u001b[1;31mNameError\u001b[0m: name 'inventory' is not defined"
]
}
],
"source": [
"total_products_available= len(inventory)\n",
"percentage_ordered=round((total_products_ordered/total_products_available)*100)\n",
"percentage_ordered\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Order Statistics: Total products ordered:3 Percentage of products ordered:15%\n"
]
}
],
"source": [
"print(f\"Order Statistics: Total products ordered:{total_products_ordered} Percentage of products ordered:{percentage_ordered}%\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"quantity_subtracted = 1\n",
"inventory[\"t-shirt\"]-=1\n",
"inventory[\"mug\"]-=1\n",
"inventory[\"hat\"]-=1\n",
"inventory[\"book\"]-=1\n",
"inventory[\"keychain\"]-=1"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"inventory[\"t-shirt\"]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"inventory[\"mug\"]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"inventory[\"hat\"]"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"4"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"inventory[\"book\"]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"5"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"inventory[\"keychain\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
Expand All @@ -68,7 +301,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
"version": "3.12.7"
}
},
"nbformat": 4,
Expand Down