This MCP (Model Context Protocol) server provides various tools to interact with dbt. You can use this MCP server to provide AI agents with context of your project in dbt Core, dbt Fusion, and dbt Platform.
Read our documentation here to learn more. This blog post provides more details for what is possible with the dbt MCP server.
If you have comments or questions, create a GitHub Issue or join us in the community Slack in the #tools-dbt-mcp channel.
The dbt MCP server architecture allows for your agent to connect to a variety of tools.
execute_sqltext_to_sql
get_dimensionsget_entitiesget_metrics_compiled_sqllist_metricslist_saved_queriesquery_metrics
get_all_modelsget_all_sourcesget_exposure_detailsget_exposuresget_macro_detailsget_mart_modelsget_model_childrenget_model_detailsget_model_healthget_model_parentsget_related_modelsget_seed_detailsget_semantic_model_detailsget_snapshot_detailsget_source_detailsget_test_details
buildcompiledocslistparserunshowtest
cancel_job_runget_job_detailsget_job_run_artifactget_job_run_detailsget_job_run_errorlist_job_run_artifactslist_jobslist_jobs_runsretry_job_runtrigger_job_run
generate_model_yamlgenerate_sourcegenerate_staging_model
get_column_lineage
Commonly, you will connect the dbt MCP server to an agent product like Claude or Cursor. However, if you are interested in creating your own agent, check out the examples directory for how to get started.
Read CONTRIBUTING.md for instructions on how to get involved!
