Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 28 additions & 22 deletions evaluation/run_subset_parallel.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,29 +90,35 @@ def do_parallel_sampling(args, task, answer_extraction_fn, eval_fn, input_dir, o

local_pids = [global_pid for (global_pid, _, _) in procs]

agg_preds = []
for fname in glob(os.path.join(output_dir, "predictions.*.json")):
if any(str(pid) in fname for pid in local_pids):
agg_preds.extend(read_data(fname))

metrics = {}
n_samples = 0
for fname in glob(os.path.join(output_dir, "metrics.*.json")):
if not any(str(pid) in fname for pid in local_pids):
continue
_metrics = read_data(fname)
n_samples += _metrics['n_samples']
for key, val in _metrics.items():
if key != 'n_samples':
metrics[key] = metrics.get(key, 0) + val * _metrics['n_samples']
for key, val in metrics.items():
metrics[key] = val / max(n_samples, 1)
if global_n_procs == 1:
agg_preds = read_data(os.path.join(output_dir, "predictions.json"))
else:
agg_preds = []
for fname in glob(os.path.join(output_dir, "predictions.*.json")):
if any(str(pid) in fname for pid in local_pids):
agg_preds.extend(read_data(fname))
if global_n_procs == 1:
metrics = read_data(os.path.join(output_dir, "metrics.json"))
result_msg = f"n samples = {metrics['n_samples']}"
else:
metrics = {}
n_samples = 0
for fname in glob(os.path.join(output_dir, "metrics.*.json")):
if not any(str(pid) in fname for pid in local_pids):
continue
_metrics = read_data(fname)
n_samples += _metrics['n_samples']
for key, val in _metrics.items():
if key != 'n_samples':
metrics[key] = metrics.get(key, 0) + val * _metrics['n_samples']
for key, val in metrics.items():
metrics[key] = val / max(n_samples, 1)

result_msg = f"n samples = {n_samples}"
for key, val in metrics.items():
result_msg += f"\n{key} = {val * 100}"
result_msg = f"n samples = {n_samples}"
for key, val in metrics.items():
result_msg += f"\n{key} = {val * 100}"

metrics['n_samples'] = n_samples
metrics['n_samples'] = n_samples

return metrics, agg_preds, result_msg

Expand Down Expand Up @@ -196,4 +202,4 @@ def main():
print(f"src = {src} | task = {task} >>>\n{result_msg}\n\n", flush=True)

if __name__ == '__main__':
main()
main()