Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

mak it run image generation on mac m3 #37

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
149 changes: 82 additions & 67 deletions demo/app_januspro.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,35 +10,48 @@
import time
# import spaces # Import spaces for ZeroGPU compatibility


# Load model and processor
# 1. Load model and processor
model_path = "deepseek-ai/Janus-Pro-7B"
config = AutoConfig.from_pretrained(model_path)
language_config = config.language_config
language_config._attn_implementation = 'eager'
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path,
language_config=language_config,
trust_remote_code=True)
if torch.cuda.is_available():
vl_gpt = vl_gpt.to(torch.bfloat16).cuda()

# 2. Check for MPS availability, otherwise fall back to CPU
if torch.backends.mps.is_available():
device = torch.device('mps')
print("Using MPS (Metal Performance Shaders)")
else:
vl_gpt = vl_gpt.to(torch.float16)
device = torch.device('cpu')
print("Using CPU")

# 3. Load model in float32, then move to MPS or CPU
vl_gpt = AutoModelForCausalLM.from_pretrained(
model_path,
language_config=language_config,
trust_remote_code=True,
torch_dtype=torch.float32 # Attempt to load everything in float32
)
vl_gpt = vl_gpt.float().to(device)

for name, module in vl_gpt.named_modules():
if isinstance(module, torch.nn.Module):
module.float()
vl_gpt.to(device)


vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
cuda_device = device

@torch.inference_mode()
# @spaces.GPU(duration=120)
# Multimodal Understanding function
def multimodal_understanding(image, question, seed, top_p, temperature):
# Clear CUDA cache before generating
torch.cuda.empty_cache()
# Clear cache if using CUDA
if torch.cuda.is_available():
torch.cuda.empty_cache()

# set seed
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)

conversation = [
{
Expand All @@ -50,12 +63,18 @@ def multimodal_understanding(image, question, seed, top_p, temperature):
]

pil_images = [Image.fromarray(image)]

prepare_inputs = vl_chat_processor(
conversations=conversation, images=pil_images, force_batchify=True
).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)
).to(cuda_device, dtype=torch.float32)


inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
# Option 1: Just remove the autocast context entirely
# with torch.autocast("mps", dtype=torch.float32"):
# inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)

# OR Option 2: explicitly disable autocast
with torch.autocast("mps", enabled=False):
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)

outputs = vl_gpt.language_model.generate(
inputs_embeds=inputs_embeds,
Expand All @@ -64,7 +83,7 @@ def multimodal_understanding(image, question, seed, top_p, temperature):
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=512,
do_sample=False if temperature == 0 else True,
do_sample=(temperature != 0),
use_cache=True,
temperature=temperature,
top_p=top_p,
Expand All @@ -73,7 +92,6 @@ def multimodal_understanding(image, question, seed, top_p, temperature):
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
return answer


def generate(input_ids,
width,
height,
Expand All @@ -82,8 +100,9 @@ def generate(input_ids,
cfg_weight: float = 5,
image_token_num_per_image: int = 576,
patch_size: int = 16):
# Clear CUDA cache before generating
torch.cuda.empty_cache()
# Clear cache if using CUDA
if torch.cuda.is_available():
torch.cuda.empty_cache()

tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device)
for i in range(parallel_size * 2):
Expand All @@ -97,8 +116,8 @@ def generate(input_ids,
for i in range(image_token_num_per_image):
with torch.no_grad():
outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds,
use_cache=True,
past_key_values=pkv)
use_cache=True,
past_key_values=pkv)
pkv = outputs.past_key_values
hidden_states = outputs.last_hidden_state
logits = vl_gpt.gen_head(hidden_states[:, -1, :])
Expand All @@ -113,10 +132,10 @@ def generate(input_ids,
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
inputs_embeds = img_embeds.unsqueeze(dim=1)



patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int),
shape=[parallel_size, 8, width // patch_size, height // patch_size])
patches = vl_gpt.gen_vision_model.decode_code(
generated_tokens.to(dtype=torch.int),
shape=[parallel_size, 8, width // patch_size, height // patch_size]
)

return generated_tokens.to(dtype=torch.int), patches

Expand All @@ -126,54 +145,60 @@ def unpack(dec, width, height, parallel_size=5):

visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
visual_img[:, :, :] = dec

return visual_img



@torch.inference_mode()
# @spaces.GPU(duration=120) # Specify a duration to avoid timeout
def generate_image(prompt,
seed=None,
guidance=5,
t2i_temperature=1.0):
# Clear CUDA cache and avoid tracking gradients
torch.cuda.empty_cache()
if torch.cuda.is_available():
torch.cuda.empty_cache()

# Set the seed for reproducible results
if seed is not None:
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)

width = 384
height = 384
parallel_size = 5

with torch.no_grad():
messages = [{'role': '<|User|>', 'content': prompt},
{'role': '<|Assistant|>', 'content': ''}]
text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(conversations=messages,
sft_format=vl_chat_processor.sft_format,
system_prompt='')
messages = [
{'role': '<|User|>', 'content': prompt},
{'role': '<|Assistant|>', 'content': ''}
]
text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
conversations=messages,
sft_format=vl_chat_processor.sft_format,
system_prompt=''
)
text = text + vl_chat_processor.image_start_tag

input_ids = torch.LongTensor(tokenizer.encode(text))
output, patches = generate(input_ids,
width // 16 * 16,
height // 16 * 16,
cfg_weight=guidance,
parallel_size=parallel_size,
temperature=t2i_temperature)
images = unpack(patches,
width // 16 * 16,
height // 16 * 16,
parallel_size=parallel_size)

return [Image.fromarray(images[i]).resize((768, 768), Image.LANCZOS) for i in range(parallel_size)]
output, patches = generate(
input_ids,
width // 16 * 16,
height // 16 * 16,
cfg_weight=guidance,
parallel_size=parallel_size,
temperature=t2i_temperature
)
images = unpack(
patches,
width // 16 * 16,
height // 16 * 16,
parallel_size=parallel_size
)

return [Image.fromarray(images[i]).resize((768, 768), Image.LANCZOS)
for i in range(parallel_size)]


# Gradio interface
with gr.Blocks() as demo:
gr.Markdown(value="# Multimodal Understanding")
gr.Markdown("# Multimodal Understanding")
with gr.Row():
image_input = gr.Image()
with gr.Column():
Expand All @@ -188,22 +213,13 @@ def generate_image(prompt,
examples_inpainting = gr.Examples(
label="Multimodal Understanding examples",
examples=[
[
"explain this meme",
"images/doge.png",
],
[
"Convert the formula into latex code.",
"images/equation.png",
],
["explain this meme", "images/doge.png"],
["Convert the formula into latex code.", "images/equation.png"],
],
inputs=[question_input, image_input],
)


gr.Markdown(value="# Text-to-Image Generation")


gr.Markdown("# Text-to-Image Generation")

with gr.Row():
cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight")
Expand All @@ -224,7 +240,7 @@ def generate_image(prompt,
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"A glass of red wine on a reflective surface.",
"A cute and adorable baby fox with big brown eyes, autumn leaves in the background enchanting,immortal,fluffy, shiny mane,Petals,fairyism,unreal engine 5 and Octane Render,highly detailed, photorealistic, cinematic, natural colors.",
"The image features an intricately designed eye set against a circular backdrop adorned with ornate swirl patterns that evoke both realism and surrealism. At the center of attention is a strikingly vivid blue iris surrounded by delicate veins radiating outward from the pupil to create depth and intensity. The eyelashes are long and dark, casting subtle shadows on the skin around them which appears smooth yet slightly textured as if aged or weathered over time.\n\nAbove the eye, there's a stone-like structure resembling part of classical architecture, adding layers of mystery and timeless elegance to the composition. This architectural element contrasts sharply but harmoniously with the organic curves surrounding it. Below the eye lies another decorative motif reminiscent of baroque artistry, further enhancing the overall sense of eternity encapsulated within each meticulously crafted detail. \n\nOverall, the atmosphere exudes a mysterious aura intertwined seamlessly with elements suggesting timelessness, achieved through the juxtaposition of realistic textures and surreal artistic flourishes. Each component\u2014from the intricate designs framing the eye to the ancient-looking stone piece above\u2014contributes uniquely towards creating a visually captivating tableau imbued with enigmatic allure.",
"The image features an intricately designed eye set against a circular backdrop adorned with ornate swirl patterns...",
],
inputs=prompt_input,
)
Expand All @@ -241,5 +257,4 @@ def generate_image(prompt,
outputs=image_output
)

demo.launch(share=True)
# demo.queue(concurrency_count=1, max_size=10).launch(server_name="0.0.0.0", server_port=37906, root_path="/path")
demo.launch(share=False)
2 changes: 1 addition & 1 deletion requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -16,4 +16,4 @@ tqdm==4.64.0
colorama==0.4.5
Pygments==2.12.0
markdown==3.4.1
SentencePiece==0.1.96
SentencePiece==0.1.99