Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions app/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -1 +1,2 @@
add_subdirectory(example)
add_subdirectory(layer_example)
2 changes: 1 addition & 1 deletion app/example/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -1 +1 @@
add_executable(example main.cpp)
add_executable(example main.cpp)
11 changes: 11 additions & 0 deletions app/layer_example/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
set(ARM_DIR "${CMAKE_SOURCE_DIR}/3rdparty/ComputeLibrary")

add_executable(Concat ConcatLayer.cpp)

include_directories(${ARM_DIR})
include_directories(${ARM_DIR}/include)
target_link_directories(Concat PUBLIC ${ARM_DIR}/build)

target_link_libraries(Concat arm_compute)

add_dependencies(Concat build_compute_library)
36 changes: 36 additions & 0 deletions app/layer_example/ConcatLayer.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
#include <iostream>
#include "arm_compute/runtime/NEON/NEFunctions.h"
#include "utils/Utils.h"

using namespace arm_compute;
using namespace utils;

int main() {
Tensor input1, input2;
Tensor output;
std::vector<const ITensor *> input;

const int input_width = 3;
const int input_height = 3;
const int axis = 2;

input1.allocator()->init(TensorInfo(TensorShape(input_width, input_height, 1), 1, DataType::F32));
input2.allocator()->init(TensorInfo(TensorShape(input_width, input_height, 1), 1, DataType::F32));

input1.allocator()->allocate();
input2.allocator()->allocate();

fill_random_tensor(input1, 0.f, 1.f);
fill_random_tensor(input2, 0.f, 1.f);

input.push_back(&input1);
input.push_back(&input2);

NEConcatenateLayer concat;
concat.configure(input, &output, axis);
output.allocator()->allocate();

concat.run();

output.print(std::cout);
}
37 changes: 37 additions & 0 deletions include/layer/layer.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
#ifndef LAYER_H
#define LAYER_H

#include <list>

#include "arm_compute/runtime/NEON/NEFunctions.h"
#include "utils/Utils.h"

using namespace arm_compute;
using namespace utils;

struct LayerAttributes {
int id = -1;
};

class Layer {
protected:
int id_;

public:
Layer() = default;
explicit Layer(const LayerAttributes& attrs) : id_(attrs.id) {}
virtual ~Layer() = default;
void setID(int id) { id_ = id; }
int getID() const { return id_; }
virtual std::string getInfoString() const;
virtual void exec(Tensor& input, Tensor& output) = 0;
virtual void exec(Tensor& input1, Tensor& input2, Tensor& output) = 0;
virtual void exec() = 0;
//virtual Shape get_output_shape() = 0;

virtual std::string get_type_name() const = 0;
void addNeighbor(Layer* neighbor);
void removeNeighbor(Layer* neighbor);
std::list<Layer*> neighbors_;
};
#endif
52 changes: 52 additions & 0 deletions src/layer/ConcatenateLayer.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
#ifndef ACL_CONCATENATE_LAYER_H
#define ACL_CONCATENATE_LAYER_H

#include <numeric>
#include <stdexcept>
#include <string>
#include <vector>

#include "include/layer/layer.h"

class ConcatenateLayer : public Layer {
private:
NEConcatenateLayer concat;
bool configured_ = false;

public:
ConcatenateLayer(int id) { setID(id); }

void configure(const std::vector<TensorShape>& inputs_shapes, unsigned int axis, TensorShape& output_shape,
std::vector<Tensor*>& input, Tensor& output) {

if (inputs_shapes.empty()) {
throw std::runtime_error("Concat: Input shapes list cannot be empty.");
}
if (inputs_shapes.size() != input.size()) {
throw std::runtime_error("Concat: vector size mismatch.");
}
std::vector<const ITensor*> inpcopy;
for (int i = 0; i < input.size(); i++) {
input[i]->allocator()->init(TensorInfo(inputs_shapes[i], 1, DataType::F32));
input[i]->allocator()->allocate();
inpcopy.push_back(input[i]);
}
output.allocator()->init(TensorInfo(output_shape, 1, DataType::F32));
concat.configure(inpcopy, &output, axis);
output.allocator()->allocate();
configured_ = true;
}

void exec() override {
if (!configured_) {
throw std::runtime_error("ConcatenateLayer: Layer not configured.");
}
concat.run();
}

std::string get_type_name() const override {
return "ConcatenateLayer";
}
};

#endif
57 changes: 57 additions & 0 deletions src/layer/ConvLayer.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
#ifndef ACL_CONVOLUTION_LAYER_SIMPLIFIED_H
#define ACL_CONVOLUTION_LAYER_SIMPLIFIED_H

#include <numeric>
#include <stdexcept>
#include <string>
#include <vector>

#include "include/layer/layer.h"

class ConvolutionLayer : public Layer {
private:
NEConvolutionLayer conv;
bool configured_ = false;

public:
ConvolutionLayer(int id) { setID(id); }
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

setID call can be moved to the parent class


void configure(
const TensorShape& input_shape,
const TensorShape& weights_shape,
const TensorShape& biases_shape,
TensorShape& output_shape,
const PadStrideInfo& info,
Tensor& input,
Tensor& weights,
Tensor& biases,
Tensor& output
) {

input.allocator()->init(TensorInfo(input_shape, 1, DataType::F32));
weights.allocator()->init(TensorInfo(weights_shape, 1, DataType::F32));
biases.allocator()->init(TensorInfo(biases_shape, 1, DataType::F32));
output.allocator()->init(TensorInfo(output_shape, 1, DataType::F32));

input.allocator()->allocate();
weights.allocator()->allocate();
biases.allocator()->allocate();
output.allocator()->allocate();

conv.configure(&input, &weights, &biases, &output, info);
configured_ = true;
}

void exec() override {
if (!configured_) {
throw std::runtime_error("ConvolutionLayer: Layer not configured.");
}
conv.run();
}

std::string get_type_name() const override {
return "ConvolutionLayer";
}
};

#endif
142 changes: 142 additions & 0 deletions src/layer/ElementwiseLayer.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
#ifndef ACL_ELEMENTWISE_LAYER_H
#define ACL_ELEMENTWISE_LAYER_H

#include <numeric>
#include <stdexcept>
#include <string>
#include <vector>

#include "include/layer/layer.h"

using namespace arm_compute;
using namespace utils;

enum class ElementwiseOp {
ADD,
DIV,
ABS,
SIGM,
SWISH,
SQUARED_DIFF
};

class ElementwiseLayer : public Layer {
private:
ElementwiseOp op_type;
NEActivationLayer act;
NEArithmeticAddition add;
NEElementwiseDivision div;
NEElementwiseSquaredDiff sqdiff;
bool configured_ = false;

public:
ElementwiseLayer(int id, ElementwiseOp op) : op_type(op) { setID(id); }

ElementwiseLayer() : ElementwiseLayer(0, ElementwiseOp::ADD) { }

void configure(const TensorShape& input_shape, TensorShape& output_shape, Tensor& input, Tensor& output) {
input.allocator()->init(TensorInfo(input_shape, 1, DataType::F32));
output.allocator()->init(TensorInfo(output_shape, 1, DataType::F32));

input.allocator()->allocate();
output.allocator()->allocate();

switch (op_type) {
case ElementwiseOp::ABS: {
act.configure(&input, &output, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::ABS));
act.run();
break;
}
case ElementwiseOp::SIGM: {
act.configure(&input, &output, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC));
act.run();
break;
}
case ElementwiseOp::SWISH: {
act.configure(&input, &output, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::SWISH));
act.run();
break;
}
default:
throw std::runtime_error("ElementwiseLayer: This operation requires two inputs");
}
configured_ = true;
}

void configure(const TensorShape& input1_shape, const TensorShape& input2_shape, TensorShape& output_shape,
Tensor& input1, Tensor& input2, Tensor& output) {
if (input1_shape.total_size() != input2_shape.total_size()) {
throw std::runtime_error(
"ElementwiseLayer: Input shapes must have same total size");
}
input1.allocator()->init(TensorInfo(input1_shape, 1, DataType::F32));
input2.allocator()->init(TensorInfo(input2_shape, 1, DataType::F32));
output.allocator()->init(TensorInfo(output_shape, 1, DataType::F32));

input1.allocator()->allocate();
input2.allocator()->allocate();
output.allocator()->allocate();

switch (op_type) {
case ElementwiseOp::ADD: {
add.configure(&input1, &input2, &output, ConvertPolicy::WRAP);
add.run();
break;
}
case ElementwiseOp::DIV: {
div.configure(&input1, &input2, &output);
div.run();
break;
}
case ElementwiseOp::SQUARED_DIFF: {
sqdiff.configure(&input1, &input2, &output);
sqdiff.run();
break;
}
default:
throw std::runtime_error("ElementwiseLayer: This operation requires single input");
}
configured_ = true;
}

void exec() override {
if (!configured_) {
throw std::runtime_error("ElementwiseLayer: Layer not configured before exec.");
}
switch (op_type) {
case ElementwiseOp::ABS:
case ElementwiseOp::SIGM:
case ElementwiseOp::SWISH:
act.run();
break;
case ElementwiseOp::ADD: {
add.run();
break;
}
case ElementwiseOp::DIV: {
div.run();
break;
}
case ElementwiseOp::SQUARED_DIFF: {
sqdiff.run();
break;
}
default:
throw std::runtime_error("ElementwiseLayer: This operation requires single input");
}
}

std::string get_type_name() const override {
switch (op_type) {
case ElementwiseOp::ADD: return "ElementwiseAddLayer";
case ElementwiseOp::DIV: return "ElementwiseDivLayer";
case ElementwiseOp::ABS: return "ElementwiseAbsLayer";
case ElementwiseOp::SIGM: return "ElementwiseSigmoidLayer";
case ElementwiseOp::SWISH: return "ElementwiseSwishLayer";
case ElementwiseOp::SQUARED_DIFF: return "ElementwiseSquaredDiffLayer";
default:return "ElementwiseUnknownLayer";
}
}
};

#endif
Loading
Loading