XGBoost似乎強大,Kaggle中優勝隊伍的御用工具,值得深入,以下整理學習步驟:
-
Step 1: XGBoost Web sites(https://xgboost.readthedocs.io/en/latest/) 大本營 原理投影片:Introduction to Boosted Tree (http://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf)
-
Step 2: 安裝XGBoost (大本營>Get Started>Installation Guide) (https://xgboost.readthedocs.io/en/latest/build.html) ,Mac、Ubuntu及Windows都有詳細教學,分為單機版與群集版,Mac群集版會有一點問題,Ubuntu無問題。
-
Step 3: Awesome XGBoost (https://github.com/dmlc/xgboost/tree/master/demo) 這是XGBoost Demo github,在README.md中,透過充足的範例,提供學習者取得起點。 (簡中介紹:http://blog.csdn.net/zc02051126/article/details/46771793)
-
Step 4: XGBoost example (如附件) Titanic: Machine Learning from Disaster (https://www.kaggle.com/cbrogan/titanic/xgboost-example-python/code) Microsoft Malware Competition (https://www.kaggle.com/c/malware-classification),冠軍GitHub https://github.com/xiaozhouwang/kaggle_Microsoft_Malware (附件為CODASPY’16 dataset- https://github.com/ManSoSec/Microsoft-Malware-Challenge)
-
[Update April 21th] 新增XGBoostMalwareAnalysis(路徑:malware/)