This repository contains the essential code for the paper ConfliBERT: A Pre-trained Language Model for Political Conflict and Violence (NAACL 2022).
Not sure where to start and why a research scholar would use ConfliBERT? Check our Installation Decision Workflow to find the best path for your experience level and needs.
If you're new to Python or prefer a no-setup solution, we recommend starting with our:
- - Try ConfliBERT directly in your browser with no installation required
- ConfliBERT GUI - Explore all ConfliBERT's capabilities through a user-friendly interface. You can:
- Analyze political texts for conflict events
- Extract event information
- Classify conflict types
- Binary classification (conflict/non-conflict)
- And more! (QA coming soon)
If you're comfortable with Python and want to set up ConfliBERT locally, continue with the installation guide below.
- Original Paper
- Hugging Face Documentation
- EventData Hugging Face (finetuned models)
- ConfliBERT Documentation (Work in Progress!)
ConfliBERT requires Python 3 and CUDA (for GPU accel). You can install the dependencies using either conda (recommended) or pip.
# Create and activate a new conda environment
conda create -n conflibert python=3.10 # Using a newer Python version for better compatibility
conda activate conflibert
# Install core packages
conda install pytorch -c pytorch # Latest stable version
conda install numpy scikit-learn pandas -c conda-forge # Latest compatible versions
# Install transformer libraries
pip install transformers # Latest stable version
pip install simpletransformers
# Optional: If you need CUDA support for GPU
# conda install cudatoolkit -c pytorch
# Create and activate a virtual environment (optional but recommended)
python3 -m venv conflibert-env
source conflibert-env/bin/activate # On Windows use: conflibert-env\Scripts\activate
# Install core packages
pip install torch # Latest stable version
pip install numpy scikit-learn pandas # Latest compatible versions
# Install transformer libraries
pip install transformers
pip install simpletransformers
# Optional: If you need GPU support, install CUDA toolkit
# Download from: https://developer.nvidia.com/cuda-downloads
After installation, verify your setup:
import torch
import transformers
import numpy
import sklearn
import pandas
from simpletransformers.model import TransformerModel
# Check CUDA availability
print(f"CUDA available: {torch.cuda.is_available()}")
print(f"PyTorch version: {torch.__version__}")
print(f"Transformers version: {transformers.__version__}")
- If you encounter CUDA errors, ensure your NVIDIA drivers are properly installed:
nvidia-smi
- For pip-only installation, you might need to install CUDA toolkit separately
- If you face dependency conflicts, try installing packages one at a time
We provided four versions of ConfliBERT:
- ConfliBERT-scr-uncased: Â Â Â Â Pretraining from scratch with our own uncased vocabulary (preferred)
- ConfliBERT-scr-cased: Â Â Â Â Pretraining from scratch with our own cased vocabulary
- ConfliBERT-cont-uncased: Â Â Â Â Continual pretraining with original BERT's uncased vocabulary
- ConfliBERT-cont-cased: Â Â Â Â Continual pretraining with original BERT's cased vocabulary
You can import the above four models directly via Huggingface API:
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("snowood1/ConfliBERT-scr-uncased", use_auth_token=True)
model = AutoModelForMaskedLM.from_pretrained("snowood1/ConfliBERT-scr-uncased", use_auth_token=True)
The usage of ConfliBERT is the same as other BERT models in Huggingface.
We provided multiple examples using Simple Transformers. You can run:
CUDA_VISIBLE_DEVICES=0 python finetune_data.py --dataset IndiaPoliceEvents_sents --report_per_epoch
Click the Colab demo to see an example of evaluation:
Below is the summary of the publicly available datasets:
Dataset | Links |
---|---|
20Newsgroups | https://www.kaggle.com/crawford/20-newsgroups |
BBCnews | https://www.kaggle.com/c/learn-ai-bbc/overview |
EventStatusCorpus | https://catalog.ldc.upenn.edu/LDC2017T09 |
GlobalContention | https://github.com/emerging-welfare/glocongold/tree/master/sample |
GlobalTerrorismDatabase | https://www.start.umd.edu/gtd/ |
Gun Violence Database | http://gun-violence.org/download/ |
IndiaPoliceEvents | https://github.com/slanglab/IndiaPoliceEvents |
InsightCrime | https://figshare.com/s/73f02ab8423bb83048aa |
MUC-4 | https://github.com/xinyadu/grit_doc_event_entity/tree/master/data/muc |
re3d | https://github.com/juand-r/entity-recognition-datasets/tree/master/data/re3d |
SATP | https://github.com/javierosorio/SATP |
CAMEO | https://dl.acm.org/doi/abs/10.1145/3514094.3534178 |
To use your own datasets, the 1st step is to preprocess the datasets into the required formats in ./data. For example,
- IndiaPoliceEvents_sents for classfication tasks. The format is sentence + labels separated by tabs.
- re3d for NER tasks in CONLL format
The 2nd step is to create the corresponding config files in ./configs with the correct tasks from ["binary", "multiclass", "multilabel", "ner"].
We have gathered a large corpus in politics and conflicts domain (33 GB) for pretraining ConfliBERT. The folder ./pretrain-corpora/Crawlers and Processes contains the sample scripts used to generate the corpus used in this study. Due to the copyright, we provide a few samples in ./pretrain-corpora/Samples. These samples follow the format of "one sentence per line format". See more details of pretraining corpora in our paper's Section 2 and Appendix.
We followed the same pretraining scripts run_mlm.py from Huggingface (The original link). Below is an example using 8 GPUs. We have provided our parameters in the Appendix. However, you should change the parameters according to your own devices:
export NGPU=8; nohup python -m torch.distributed.launch --master_port 12345 \
--nproc_per_node=$NGPU run_mlm.py \
--model_type bert \
--config_name ./bert_base_cased \
--tokenizer_name ./bert_base_cased \
--output_dir ./bert_base_cased \
--cache_dir ./cache_cased_128 \
--use_fast_tokenizer \
--overwrite_output_dir \
--train_file YOUR_TRAIN_FILE \
--validation_file YOUR_VALID_FILE \
--max_seq_length 128\
--preprocessing_num_workers 4 \
--dataloader_num_workers 2 \
--do_train --do_eval \
--learning_rate 5e-4 \
--warmup_steps=10000 \
--save_steps 1000 \
--evaluation_strategy steps \
--eval_steps 10000 \
--prediction_loss_only \
--save_total_limit 3 \
--per_device_train_batch_size 64 --per_device_eval_batch_size 64 \
--gradient_accumulation_steps 4 \
--logging_steps=100 \
--max_steps 100000 \
--adam_beta1 0.9 --adam_beta2 0.98 --adam_epsilon 1e-6 \
--fp16 True --weight_decay=0.01
If you find this repo useful in your research, please consider citing:
@inproceedings{hu2022conflibert,
title={ConfliBERT: A Pre-trained Language Model for Political Conflict and Violence},
author={Hu, Yibo and Hosseini, MohammadSaleh and Parolin, Erick Skorupa and Osorio, Javier and Khan, Latifur and Brandt, Patrick and D’Orazio, Vito},
booktitle={Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies},
pages={5469--5482},
year={2022}
}
These workflows help you navigate both technical setup and research planning with ConfliBERT.