- Introduction
- Rosenblatt's Perceptron
- Limitations of Perceptrons
- Multilayer Perceptrons
- Network Architecture
- Types of Hidden Units
- How Neural Networks Learn
- Gradient-based Learning
- The Backpropagation Algorithmus
- Deep Learning in Python
- Overview
- Tensorflow
- Keras
- Regularization
- Weight Decay and other Parameter Penalties
- Early Stopping
- Dropout
- Batch Normalization
- Data Augmentation
- Haykin, Simon (2009) Neural Networks and Learning Machines. Pearson: New Jersey.
- Goodfellow, Ian et al. (2016) Deep Learning. The MIT Press: Cambridge, Massachusetts.
- Cristianini, Nello and John Shawe-Taylor (2000) An Introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press: Cambridge, UK.