Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 12 additions & 12 deletions lsd/tutorial/example_nets/fib25/acrlsd/mknet.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
import json
import mala
from funlib.learn.tensorflow import models
from funlib.learn.tensorflow.models.unet import crop
import tensorflow as tf
from mala.networks.unet import crop_zyx

def create_auto(input_shape, output_shape, name):

Expand All @@ -12,20 +12,20 @@ def create_auto(input_shape, output_shape, name):
raw = tf.placeholder(tf.float32, shape=input_shape)
raw_batched = tf.reshape(raw, (1, 1) + input_shape)

unet, _, _ = mala.networks.unet(
unet, _, _ = models.unet(
raw_batched,
12,
6,
[[2,2,2],[2,2,2],[3,3,3]])

embedding_batched, _ = mala.networks.conv_pass(
embedding_batched, _ = models.conv_pass(
unet,
kernel_sizes=[1],
num_fmaps=10,
activation='sigmoid',
name='embedding')

embedding_batched = crop_zyx(embedding_batched, (1, 10) + output_shape)
embedding_batched = crop(embedding_batched, (1, 10) + output_shape)
embedding = tf.reshape(embedding_batched, (10,) + output_shape)

print("input shape : %s"%(input_shape,))
Expand All @@ -50,21 +50,21 @@ def create_affs(input_shape, intermediate_shape, expected_output_shape, name):
raw = tf.placeholder(tf.float32, shape=input_shape)
raw_batched = tf.reshape(raw, (1, 1) + input_shape)
raw_in = tf.reshape(raw_batched, input_shape)
raw_batched = crop_zyx(raw_batched, (1, 1) + intermediate_shape)
raw_batched = crop(raw_batched, (1, 1) + intermediate_shape)
raw_cropped = tf.reshape(raw_batched, intermediate_shape)

pretrained_lsd = tf.placeholder(tf.float32, shape=(10,) + intermediate_shape)
pretrained_lsd_batched = tf.reshape(pretrained_lsd, (1, 10) + intermediate_shape)

concat_input = tf.concat([raw_batched, pretrained_lsd_batched], axis=1)

unet, _, _ = mala.networks.unet(
unet, _, _ = models.unet(
concat_input,
12,
6,
[[2,2,2],[2,2,2],[3,3,3]])

affs_batched, _ = mala.networks.conv_pass(
affs_batched, _ = models.conv_pass(
unet,
kernel_sizes=[1],
num_fmaps=3,
Expand Down Expand Up @@ -129,15 +129,15 @@ def create_config(input_shape, output_shape, name):

if __name__ == "__main__":

train_input_shape = (304, 304, 304)
train_input_shape = (328, 328, 328)
train_intermediate_shape = (196, 196, 196)
train_output_shape = (92, 92, 92)
train_output_shape = (72, 72, 72)

create_auto(train_input_shape, train_intermediate_shape, 'train_auto_net')
create_affs(train_input_shape, train_intermediate_shape, train_output_shape, 'train_net')

test_input_shape = (364, 364, 364)
test_output_shape = (260, 260, 260)
test_output_shape = (240, 240, 240)

create_affs(test_input_shape, test_input_shape, test_output_shape, 'test_net')

Expand Down