Skip to content

docs: add code snippets for session and IO public docs #1919

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Jul 21, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
169 changes: 169 additions & 0 deletions samples/snippets/sessions_and_io_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,169 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


def test_sessions_and_io(project_id: str, dataset_id: str) -> None:
YOUR_PROJECT_ID = project_id
YOUR_LOCATION = "us"

# [START bigquery_dataframes_create_and_use_session_instance]
import bigframes
import bigframes.pandas as bpd

# Create session object
context = bigframes.BigQueryOptions(
project=YOUR_PROJECT_ID,
location=YOUR_LOCATION,
)
session = bigframes.Session(context)

# Load a BigQuery table into a dataframe
df1 = session.read_gbq("bigquery-public-data.ml_datasets.penguins")

# Create a dataframe with local data:
df2 = bpd.DataFrame({"my_col": [1, 2, 3]}, session=session)
# [END bigquery_dataframes_create_and_use_session_instance]
assert df1 is not None
assert df2 is not None

# [START bigquery_dataframes_combine_data_from_multiple_sessions_raise_error]
import bigframes
import bigframes.pandas as bpd

context = bigframes.BigQueryOptions(location=YOUR_LOCATION, project=YOUR_PROJECT_ID)

session1 = bigframes.Session(context)
session2 = bigframes.Session(context)

series1 = bpd.Series([1, 2, 3, 4, 5], session=session1)
series2 = bpd.Series([1, 2, 3, 4, 5], session=session2)

try:
series1 + series2
except ValueError as e:
print(e) # Error message: Cannot use combine sources from multiple sessions
# [END bigquery_dataframes_combine_data_from_multiple_sessions_raise_error]

# [START bigquery_dataframes_set_options_for_global_session]
import bigframes.pandas as bpd

# Set project ID for the global session
bpd.options.bigquery.project = YOUR_PROJECT_ID
# Update the global default session location
bpd.options.bigquery.location = YOUR_LOCATION
# [END bigquery_dataframes_set_options_for_global_session]

# [START bigquery_dataframes_global_session_is_the_default_session]
# The following two statements are essentiall the same
df = bpd.read_gbq("bigquery-public-data.ml_datasets.penguins")
df = bpd.get_global_session().read_gbq("bigquery-public-data.ml_datasets.penguins")
# [END bigquery_dataframes_global_session_is_the_default_session]
assert df is not None

# [START bigquery_dataframes_create_dataframe_from_py_and_np]
import numpy as np

import bigframes.pandas as bpd

s = bpd.Series([1, 2, 3])

# Create a dataframe with Python dict
df = bpd.DataFrame(
{
"col_1": [1, 2, 3],
"col_2": [4, 5, 6],
}
)

# Create a series with Numpy
s = bpd.Series(np.arange(10))
# [END bigquery_dataframes_create_dataframe_from_py_and_np]
assert s is not None

# [START bigquery_dataframes_create_dataframe_from_pandas]
import numpy as np
import pandas as pd

import bigframes.pandas as bpd

pd_df = pd.DataFrame(np.random.randn(4, 2))

# Convert Pandas dataframe to BigQuery DataFrame with read_pandas()
df_1 = bpd.read_pandas(pd_df)
# Convert Pandas dataframe to BigQuery DataFrame with the dataframe constructor
df_2 = bpd.DataFrame(pd_df)
# [END bigquery_dataframes_create_dataframe_from_pandas]
assert df_1 is not None
assert df_2 is not None

# [START bigquery_dataframes_convert_bq_dataframe_to_pandas]
import bigframes.pandas as bpd

bf_df = bpd.DataFrame({"my_col": [1, 2, 3]})
# Returns a Pandas Dataframe
bf_df.to_pandas()

bf_s = bpd.Series([1, 2, 3])
# Returns a Pandas Series
bf_s.to_pandas()
# [END bigquery_dataframes_convert_bq_dataframe_to_pandas]
assert bf_s.to_pandas() is not None

# [START bigquery_dataframes_to_pandas_dry_run]
import bigframes.pandas as bpd

df = bpd.read_gbq("bigquery-public-data.ml_datasets.penguins")

# Returns a Pandas series with dry run stats
df.to_pandas(dry_run=True)
# [END bigquery_dataframes_to_pandas_dry_run]
assert df.to_pandas(dry_run=True) is not None

# [START bigquery_dataframes_read_data_from_csv]
import bigframes.pandas as bpd

# Read a CSV file from GCS
df = bpd.read_csv("gs://cloud-samples-data/bigquery/us-states/us-states.csv")
# [END bigquery_dataframes_read_data_from_csv]
assert df is not None

# [START bigquery_dataframes_read_data_from_bigquery_table]
import bigframes.pandas as bpd

df = bpd.read_gbq("bigquery-public-data.ml_datasets.penguins")
# [END bigquery_dataframes_read_data_from_bigquery_table]
assert df is not None

# [START bigquery_dataframes_read_from_sql_query]
import bigframes.pandas as bpd

sql = """
SELECT species, island, body_mass_g
FROM bigquery-public-data.ml_datasets.penguins
WHERE sex = 'MALE'
"""

df = bpd.read_gbq(sql)
# [END bigquery_dataframes_read_from_sql_query]
assert df is not None

table_name = "snippets-session-and-io-test"

# [START bigquery_dataframes_dataframe_to_bigquery_table]
import bigframes.pandas as bpd

df = bpd.DataFrame({"my_col": [1, 2, 3]})

df.to_gbq(f"{project_id}.{dataset_id}.{table_name}")
# [END bigquery_dataframes_dataframe_to_bigquery_table]