Skip to content

hacking-who-are-you/watson-autoencoder

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AE Server (Autoencoder-based Anomaly Detection)

Quickstart

  1. Create env and install deps (uv 추천):
# using uv (project dir는 `ae_server/` 입니다)
cd /data/janghyunroh/projects/hackathon/anomaly_detection_server/ae_server
# (선택1) 자동으로 .venv 생성+설치: 프로젝트 의존성 싱크
uv sync
# (선택2) 수동: venv 만들고 에디터블 설치
uv venv
source .venv/bin/activate
uv pip install -e .

# CPU 전용 PyTorch가 필요하면(대용량 CUDA 미설치)
# uv pip install --index-url https://download.pytorch.org/whl/cpu torch==2.3.1
  1. Prepare training data at /data/janghyunroh/projects/hackathon/anomaly_detection_server/data/normal_traffic.jsonl.

  2. Train model and save artifacts:

uv run -m ae_server.app.training --epochs 5
  1. Run server:
uv run -m uvicorn ae_server.app.main:app --host 0.0.0.0 --port 8080 --reload
  1. Test request:
uv run /data/janghyunroh/projects/hackathon/anomaly_detection_server/scripts/test_client.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages