Skip to content

hejianglin2001/SemiBCD

Repository files navigation

SemiBCD

This repository contains the testing code and pretrained models for our paper:

Paper under review
Authors: [Anonymous for review]
Under Review, 2025


🔧 Environment Setup

We recommend using conda:

conda create -n semibcd python=3.9 -y
conda activate semibcd
pip install -r requirements.txt

📥 Download Backbone Pretrained Weights

SemiBCD uses a ResNet-50 backbone. Download the pretrained checkpoint: 👉 ResNet-50

📥 Download Dataset

1. LEVIR-CD-256

👉 LEVIR-CD-256 Dataset
Extract the downloaded file to the data/LEVIR-CD-256/ folder.

2. WHU-CD-256

👉 WHU-CD-256 Dataset
Extract the downloaded file to the data/WHU-CD-256/ folder.

🚀 Run Testing

1. Download pretrained experiment weights

👉 SemiBCD Experiment Weights

2. Run testing

Run WHU test:

python eval.py --config configs/eval_whu_config.yaml --checkpoint ./best.pth

Run LEVIR test:

python eval.py --config configs/eval_levir_config.yaml --checkpoint ./best.pth

Acknowledgements

SemiBCD is based on SemiCD-VL, SemiVL, UniMatch, APE, and MMSegmentation. We thank their authors for making the source code publicly available.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages