This repository contains the testing code and pretrained models for our paper:
Paper under review
Authors: [Anonymous for review]
Under Review, 2025
We recommend using conda:
conda create -n semibcd python=3.9 -y
conda activate semibcd
pip install -r requirements.txtSemiBCD uses a ResNet-50 backbone. Download the pretrained checkpoint: 👉 ResNet-50
👉 LEVIR-CD-256 Dataset
Extract the downloaded file to the data/LEVIR-CD-256/ folder.
👉 WHU-CD-256 Dataset
Extract the downloaded file to the data/WHU-CD-256/ folder.
Run WHU test:
python eval.py --config configs/eval_whu_config.yaml --checkpoint ./best.pth
Run LEVIR test:
python eval.py --config configs/eval_levir_config.yaml --checkpoint ./best.pth
SemiBCD is based on SemiCD-VL, SemiVL, UniMatch, APE, and MMSegmentation. We thank their authors for making the source code publicly available.