Skip to content

helgestein/helao-pub

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HELAO public repository 🤖 🚀 🤝 👩‍🔬 👨‍🔬

Helao deploys Hierachical Experimental Laboratory Automation and Orchestration The idea behind this project is that we wanted to deploy active learning to different devices located in our laboratory and to others and even to many instruments running in parallel. To to this we utilized fastAPI, a web framework that allows the facile developement of APIs.

You may find the preprint on chemRxiv here: here

The hdf5 files created during a simulated active learning run both in parallel and sequential instrument operation can be found here

logo

HELAO-pub repository

This repository is our developement branch as of the day of publication. If you seek to make changes please do so but this will need permission from some of the contributors.

Abstract

Materials acceleration platforms (MAPs) operate on the paradigm of integrating combinatorial synthesis, high-throughput characterization, automatic analysis and machine learning. Within these MAPs one or multiple autonomous feedback loops aim to optimize materials for certain functional properties or generate new insights. Fundamentally, this necessitates accelerated, but foremost integrated, research actions. Herein, a web based asynchronous protocol to seamlessly integrate research tasks within a hierarchical experimental laboratory automation and orchestration (HELAO) framework is presented. We demonstrate the capability of orchestrating distributed research instruments that may incorporate data from experiments, simulations, and databases. HELAO offers interfacing laboratory hardware and software distributed across several computers and operating systems for executing an experiment, data analysis, provenance tracking, and autonomous planning. Research acceleration in terms of reduction of total experimental time is demonstrated to be close to 2x (in addition to the speedup of active learning of 5-10x depending on active learning metric) by deploying a centrally orchestrated fleet of instruments for a active learning. To the best of our knowledge, HELAO is the only laboratory automation framework with integrated data management capable of running closed loop optimization on multiple instruments and extreme modularity.

TL;DR

If you want to build autonomous labs that are spread around the globe use this framework - it might save you a lot of stress.

Getting started

We have implemented a series of drivers and analysis techniques which you can easily reuse if you have the same or similar hardware. Currently implemented devices in the laboratories at KIT and Caltech are shown in the table below. Instruments build from this include scanning droplet cells, high-throughput spectrometers and a battery assembly robot (all to be published elsewhere). The extreme modularity allows to mix and match any of these devices by simply defining a sequence of events i.e. to build an integrated SDC and spectrometer or a sample echange robot no code changes are necessary. The currently implemented hardware is the following:

Device Name Type Communication Measures Manufacturer natively blocking
lang Motion .net API position Lang GmbH no
galil Motion, IO TCP/IP position Galil Motion Control Inc. no
owis Motion serial commands position Owis GmbH no
mecademic Motion python TCP/IP API position, state Mecademic Ltd. no
rail Motion TCP/IP position Jenny Science AG no
autolab Potentiostat .net API electrochemistry Methrohm Autolab B.V. yes
gamry Potentiostat .dll for serial communication electrochemistry Gamry Instruments Inc. yes
arbin Potentiostat autohotkey electrochemistry Arbin Inc. no
pump pumping serial commands n.a. CAT  engineering GmbH no
arcoptix spectroscopy .dll api IR spectra arcoptix S.A. yes
ocean spectroscopy Raman python package Raman spectra ocean insights GmbH yes
force force sensing serial commands force ME Meßsysteme GmbH n/a
arduino relays, I/O python package n.a. arduino no
kadi data management python package n.a. KIT yes
aux machine learning and analysis python package n.a. n.a. yes

There are dummy drivers and dummy analysis "devices" indicating how you can your own.

Environment setup

HELAO is very lightweight and besides hardware drivers you just need a working python installation with fastAPI and starlette. If you wish to setup thing super easy from scratch just follow these steps:

Simulation servers

  • galil and gamry server code current import from driver.*_simulate
  • cd into server directory, execute start fastapi instances via python galil_server.py and python gamry_server.py

Launch script

  • helao.py script can validate server configuration parameters, launch a group of servers, and shutdown all servers beloning to a group
  • server groups may be defined as .py files in the config/ folder (see config/world.py as an example)
  • launch syntax: python helao.py world will validate and launch servers with parameters defined in config/world.py, while also writing all monitored process IDs to pids_world.pck in the root directory
  • exercise caution when running multiple server groups as there is currently no check for ports that are currently in-use between different config files

Design

High level layout of HELAO where experiments are executed by sequentially calling actions which are high level wrappers for other actions or low level driver instructions. Communication goes hierarchically down from the orchestrator level to actions, which may communicate with one another, to the lowest level of drivers which may only communicate with the calling action. The orchestrator, actions and drivers are all exposing python class functions through a web interface allowing for a modular and distributed hosting of each item. Experiments are dictionaries containing a sequence of events (SOE) that outlines in which the actions are to be executed. All actions require parameters and are supplied with experiment level metadata. Metadata may be introduced at any level. helao

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 957189.

About

hierachical automation of the natural sciences

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published