Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion tests/lora/test_lora_layers_auraflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,6 @@
class AuraFlowLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
pipeline_class = AuraFlowPipeline
scheduler_cls = FlowMatchEulerDiscreteScheduler
scheduler_classes = [FlowMatchEulerDiscreteScheduler]
scheduler_kwargs = {}

transformer_kwargs = {
Expand Down
2 changes: 0 additions & 2 deletions tests/lora/test_lora_layers_cogvideox.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,6 @@

from diffusers import (
AutoencoderKLCogVideoX,
CogVideoXDDIMScheduler,
CogVideoXDPMScheduler,
CogVideoXPipeline,
CogVideoXTransformer3DModel,
Expand All @@ -44,7 +43,6 @@ class CogVideoXLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
pipeline_class = CogVideoXPipeline
scheduler_cls = CogVideoXDPMScheduler
scheduler_kwargs = {"timestep_spacing": "trailing"}
scheduler_classes = [CogVideoXDDIMScheduler, CogVideoXDPMScheduler]

transformer_kwargs = {
"num_attention_heads": 4,
Expand Down
36 changes: 17 additions & 19 deletions tests/lora/test_lora_layers_cogview4.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,6 @@ def from_pretrained(*args, **kwargs):
class CogView4LoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
pipeline_class = CogView4Pipeline
scheduler_cls = FlowMatchEulerDiscreteScheduler
scheduler_classes = [FlowMatchEulerDiscreteScheduler]
scheduler_kwargs = {}

transformer_kwargs = {
Expand Down Expand Up @@ -124,30 +123,29 @@ def test_simple_inference_save_pretrained(self):
"""
Tests a simple usecase where users could use saving utilities for LoRA through save_pretrained
"""
for scheduler_cls in self.scheduler_classes:
components, _, _ = self.get_dummy_components(scheduler_cls)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
components, _, _ = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)

output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
self.assertTrue(output_no_lora.shape == self.output_shape)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
self.assertTrue(output_no_lora.shape == self.output_shape)

images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]

with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)

pipe_from_pretrained = self.pipeline_class.from_pretrained(tmpdirname)
pipe_from_pretrained.to(torch_device)
pipe_from_pretrained = self.pipeline_class.from_pretrained(tmpdirname)
pipe_from_pretrained.to(torch_device)

images_lora_save_pretrained = pipe_from_pretrained(**inputs, generator=torch.manual_seed(0))[0]
images_lora_save_pretrained = pipe_from_pretrained(**inputs, generator=torch.manual_seed(0))[0]

self.assertTrue(
np.allclose(images_lora, images_lora_save_pretrained, atol=1e-3, rtol=1e-3),
"Loading from saved checkpoints should give same results.",
)
self.assertTrue(
np.allclose(images_lora, images_lora_save_pretrained, atol=1e-3, rtol=1e-3),
"Loading from saved checkpoints should give same results.",
)

@parameterized.expand([("block_level", True), ("leaf_level", False)])
@require_torch_accelerator
Expand Down
6 changes: 2 additions & 4 deletions tests/lora/test_lora_layers_flux.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,9 +55,8 @@
@require_peft_backend
class FluxLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
pipeline_class = FluxPipeline
scheduler_cls = FlowMatchEulerDiscreteScheduler()
scheduler_cls = FlowMatchEulerDiscreteScheduler
scheduler_kwargs = {}
scheduler_classes = [FlowMatchEulerDiscreteScheduler]
transformer_kwargs = {
"patch_size": 1,
"in_channels": 4,
Expand Down Expand Up @@ -282,9 +281,8 @@ def test_simple_inference_with_text_denoiser_multi_adapter_block_lora(self):

class FluxControlLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
pipeline_class = FluxControlPipeline
scheduler_cls = FlowMatchEulerDiscreteScheduler()
scheduler_cls = FlowMatchEulerDiscreteScheduler
scheduler_kwargs = {}
scheduler_classes = [FlowMatchEulerDiscreteScheduler]
transformer_kwargs = {
"patch_size": 1,
"in_channels": 8,
Expand Down
1 change: 0 additions & 1 deletion tests/lora/test_lora_layers_hunyuanvideo.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,6 @@
class HunyuanVideoLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
pipeline_class = HunyuanVideoPipeline
scheduler_cls = FlowMatchEulerDiscreteScheduler
scheduler_classes = [FlowMatchEulerDiscreteScheduler]
scheduler_kwargs = {}

transformer_kwargs = {
Expand Down
1 change: 0 additions & 1 deletion tests/lora/test_lora_layers_ltx_video.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,6 @@
class LTXVideoLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
pipeline_class = LTXPipeline
scheduler_cls = FlowMatchEulerDiscreteScheduler
scheduler_classes = [FlowMatchEulerDiscreteScheduler]
scheduler_kwargs = {}

transformer_kwargs = {
Expand Down
58 changes: 27 additions & 31 deletions tests/lora/test_lora_layers_lumina2.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,6 @@
class Lumina2LoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
pipeline_class = Lumina2Pipeline
scheduler_cls = FlowMatchEulerDiscreteScheduler
scheduler_classes = [FlowMatchEulerDiscreteScheduler]
scheduler_kwargs = {}

transformer_kwargs = {
Expand Down Expand Up @@ -141,33 +140,30 @@ def test_simple_inference_with_text_lora_save_load(self):
strict=False,
)
def test_lora_fuse_nan(self):
for scheduler_cls in self.scheduler_classes:
components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)

if "text_encoder" in self.pipeline_class._lora_loadable_modules:
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
)

denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
denoiser.add_adapter(denoiser_lora_config, "adapter-1")
self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

# corrupt one LoRA weight with `inf` values
with torch.no_grad():
pipe.transformer.layers[0].attn.to_q.lora_A["adapter-1"].weight += float("inf")

# with `safe_fusing=True` we should see an Error
with self.assertRaises(ValueError):
pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=True)

# without we should not see an error, but every image will be black
pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=False)
out = pipe(**inputs)[0]

self.assertTrue(np.isnan(out).all())
components, text_lora_config, denoiser_lora_config = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)

if "text_encoder" in self.pipeline_class._lora_loadable_modules:
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
denoiser.add_adapter(denoiser_lora_config, "adapter-1")
self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

# corrupt one LoRA weight with `inf` values
with torch.no_grad():
pipe.transformer.layers[0].attn.to_q.lora_A["adapter-1"].weight += float("inf")

# with `safe_fusing=True` we should see an Error
with self.assertRaises(ValueError):
pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=True)

# without we should not see an error, but every image will be black
pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=False)
out = pipe(**inputs)[0]

self.assertTrue(np.isnan(out).all())
1 change: 0 additions & 1 deletion tests/lora/test_lora_layers_mochi.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,6 @@
class MochiLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
pipeline_class = MochiPipeline
scheduler_cls = FlowMatchEulerDiscreteScheduler
scheduler_classes = [FlowMatchEulerDiscreteScheduler]
scheduler_kwargs = {}

transformer_kwargs = {
Expand Down
1 change: 0 additions & 1 deletion tests/lora/test_lora_layers_qwenimage.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,6 @@
class QwenImageLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
pipeline_class = QwenImagePipeline
scheduler_cls = FlowMatchEulerDiscreteScheduler
scheduler_classes = [FlowMatchEulerDiscreteScheduler]
scheduler_kwargs = {}

transformer_kwargs = {
Expand Down
5 changes: 2 additions & 3 deletions tests/lora/test_lora_layers_sana.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,9 +31,8 @@
@require_peft_backend
class SanaLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
pipeline_class = SanaPipeline
scheduler_cls = FlowMatchEulerDiscreteScheduler(shift=7.0)
scheduler_kwargs = {}
scheduler_classes = [FlowMatchEulerDiscreteScheduler]
scheduler_cls = FlowMatchEulerDiscreteScheduler
scheduler_kwargs = {"shift": 7.0}
transformer_kwargs = {
"patch_size": 1,
"in_channels": 4,
Expand Down
1 change: 0 additions & 1 deletion tests/lora/test_lora_layers_sd3.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,6 @@ class SD3LoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
pipeline_class = StableDiffusion3Pipeline
scheduler_cls = FlowMatchEulerDiscreteScheduler
scheduler_kwargs = {}
scheduler_classes = [FlowMatchEulerDiscreteScheduler]
transformer_kwargs = {
"sample_size": 32,
"patch_size": 1,
Expand Down
1 change: 0 additions & 1 deletion tests/lora/test_lora_layers_wan.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,6 @@
class WanLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
pipeline_class = WanPipeline
scheduler_cls = FlowMatchEulerDiscreteScheduler
scheduler_classes = [FlowMatchEulerDiscreteScheduler]
scheduler_kwargs = {}

transformer_kwargs = {
Expand Down
4 changes: 1 addition & 3 deletions tests/lora/test_lora_layers_wanvace.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,6 @@
class WanVACELoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
pipeline_class = WanVACEPipeline
scheduler_cls = FlowMatchEulerDiscreteScheduler
scheduler_classes = [FlowMatchEulerDiscreteScheduler]
scheduler_kwargs = {}

transformer_kwargs = {
Expand Down Expand Up @@ -165,9 +164,8 @@ def test_layerwise_casting_inference_denoiser(self):

@require_peft_version_greater("0.13.2")
def test_lora_exclude_modules_wanvace(self):
scheduler_cls = self.scheduler_classes[0]
exclude_module_name = "vace_blocks.0.proj_out"
components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
components, text_lora_config, denoiser_lora_config = self.get_dummy_components()
pipe = self.pipeline_class(**components).to(torch_device)
_, _, inputs = self.get_dummy_inputs(with_generator=False)

Expand Down
Loading
Loading