Skip to content

[LoRA] support Kohya Flux LoRAs that have text encoders as well #9542

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Sep 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 39 additions & 2 deletions src/diffusers/loaders/lora_conversion_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -516,10 +516,47 @@ def _convert_sd_scripts_to_ai_toolkit(sds_sd):
f"transformer.single_transformer_blocks.{i}.norm.linear",
)

remaining_keys = list(sds_sd.keys())
te_state_dict = {}
if remaining_keys:
if not all(k.startswith("lora_te1") for k in remaining_keys):
raise ValueError(f"Incompatible keys detected: \n\n {', '.join(remaining_keys)}")
for key in remaining_keys:
if not key.endswith("lora_down.weight"):
continue

lora_name = key.split(".")[0]
lora_name_up = f"{lora_name}.lora_up.weight"
lora_name_alpha = f"{lora_name}.alpha"
diffusers_name = _convert_text_encoder_lora_key(key, lora_name)

if lora_name.startswith(("lora_te_", "lora_te1_")):
down_weight = sds_sd.pop(key)
sd_lora_rank = down_weight.shape[0]
te_state_dict[diffusers_name] = down_weight
te_state_dict[diffusers_name.replace(".down.", ".up.")] = sds_sd.pop(lora_name_up)

if lora_name_alpha in sds_sd:
alpha = sds_sd.pop(lora_name_alpha).item()
scale = alpha / sd_lora_rank

scale_down = scale
scale_up = 1.0
while scale_down * 2 < scale_up:
scale_down *= 2
scale_up /= 2

te_state_dict[diffusers_name] *= scale_down
te_state_dict[diffusers_name.replace(".down.", ".up.")] *= scale_up

if len(sds_sd) > 0:
logger.warning(f"Unsuppored keys for ai-toolkit: {sds_sd.keys()}")
logger.warning(f"Unsupported keys for ai-toolkit: {sds_sd.keys()}")

if te_state_dict:
te_state_dict = {f"text_encoder.{module_name}": params for module_name, params in te_state_dict.items()}

return ait_sd
new_state_dict = {**ait_sd, **te_state_dict}
return new_state_dict

return _convert_sd_scripts_to_ai_toolkit(state_dict)

Expand Down
20 changes: 20 additions & 0 deletions tests/lora/test_lora_layers_flux.py
Original file line number Diff line number Diff line change
Expand Up @@ -228,6 +228,26 @@ def test_flux_kohya(self):

assert np.allclose(out_slice, expected_slice, atol=1e-4, rtol=1e-4)

def test_flux_kohya_with_text_encoder(self):
self.pipeline.load_lora_weights("cocktailpeanut/optimus", weight_name="optimus.safetensors")
self.pipeline.fuse_lora()
self.pipeline.unload_lora_weights()
self.pipeline.enable_model_cpu_offload()

prompt = "optimus is cleaning the house with broomstick"
out = self.pipeline(
prompt,
num_inference_steps=self.num_inference_steps,
guidance_scale=4.5,
output_type="np",
generator=torch.manual_seed(self.seed),
).images

out_slice = out[0, -3:, -3:, -1].flatten()
expected_slice = np.array([0.4023, 0.4043, 0.4023, 0.3965, 0.3984, 0.3984, 0.3906, 0.3906, 0.4219])

assert np.allclose(out_slice, expected_slice, atol=1e-4, rtol=1e-4)

def test_flux_xlabs(self):
self.pipeline.load_lora_weights("XLabs-AI/flux-lora-collection", weight_name="disney_lora.safetensors")
self.pipeline.fuse_lora()
Expand Down
Loading