-
Notifications
You must be signed in to change notification settings - Fork 372
Adds inspectai #1022
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Adds inspectai #1022
Changes from 59 commits
2696a49
578d530
21fa870
27b2af1
b9a610d
25c1128
0d42edf
6cc3c04
4c38951
d2fd5e1
2ddb0f9
ee97122
e2c8e22
c980ddb
57fe390
ee081f2
1ed1602
f4b0e27
81d9e4e
b734532
c3911fc
e439f70
6447ee7
88754bf
5445f5c
f53bd76
6a0c615
1435e38
15f41f2
74e5c0f
aad136c
242bc43
6806bf8
e94fa59
8800d1a
970f33b
b8c26dc
764de72
a326ea8
81081cd
74b40f6
083fb1b
2dab2bf
57ca0e5
480e40a
ade2900
079ceaf
8d00799
cea5e99
fb47bb7
2736bc9
d5e6c9f
e55a9af
ba41f1c
59c5dcc
40254db
53275fe
72e5c2b
7fc1753
260d744
835b799
c216a27
21e6020
7e65400
0a4f6be
b661d0d
f142b39
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,249 @@ | ||
| # MIT License | ||
|
|
||
| # Copyright (c) 2024 The HuggingFace Team | ||
|
|
||
| # Permission is hereby granted, free of charge, to any person obtaining a copy | ||
| # of this software and associated documentation files (the "Software"), to deal | ||
| # in the Software without restriction, including without limitation the rights | ||
| # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
| # copies of the Software, and to permit persons to whom the Software is | ||
| # furnished to do so, subject to the following conditions: | ||
|
|
||
| # The above copyright notice and this permission notice shall be included in all | ||
| # copies or substantial portions of the Software. | ||
|
|
||
| # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
| # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
| # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
| # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
| # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
| # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
| # SOFTWARE. | ||
|
|
||
| import logging | ||
| from collections import defaultdict | ||
| from typing import Literal | ||
|
|
||
| from inspect_ai import Epochs, Task, task | ||
| from inspect_ai import eval_set as inspect_ai_eval_set | ||
| from inspect_ai.dataset import hf_dataset | ||
| from inspect_ai.scorer import exact | ||
| from inspect_ai.solver import generate, system_message | ||
| from pytablewriter import MarkdownTableWriter | ||
|
|
||
| from lighteval.models.abstract_model import InspectAIModelConfig | ||
| from lighteval.tasks.lighteval_task import LightevalTaskConfig | ||
|
|
||
|
|
||
| logger = logging.getLogger(__name__) | ||
|
|
||
|
|
||
| @task | ||
| def get_inspect_ai_task(lighteval_task_config: LightevalTaskConfig) -> Task: | ||
| name = lighteval_task_config.name | ||
| sample_fields = lighteval_task_config.sample_fields | ||
|
|
||
| dataset_repo = lighteval_task_config.hf_repo | ||
| dataset_subset = lighteval_task_config.hf_subset | ||
| dataset_split = lighteval_task_config.evaluation_splits[0] | ||
|
|
||
| dataset = hf_dataset(dataset_repo, name=dataset_subset, split=dataset_split, sample_fields=sample_fields) | ||
| if lighteval_task_config.filter is not None: | ||
| dataset = dataset.filter(lighteval_task_config.filter) | ||
| solver = lighteval_task_config.solver or [ | ||
| generate(cache=True), | ||
| ] | ||
| scorers = lighteval_task_config.scorer or exact() | ||
| # TODO: have per task epoch and epoch reducer | ||
| epochs = 1 | ||
| epochs_reducer = "mean" | ||
|
|
||
| if lighteval_task_config.num_fewshots > 0: | ||
| name += f"_{lighteval_task_config.num_fewshots}_shots" | ||
| # TODO: use fewshot split | ||
| fewshots = hf_dataset( | ||
| path=dataset_repo, | ||
| name=dataset_subset, | ||
| split=dataset_split, | ||
| sample_fields=sample_fields, | ||
| shuffle=True, | ||
| seed=42, | ||
| limit=lighteval_task_config.num_fewshots, | ||
| ) | ||
| solver.insert( | ||
| 0, | ||
| system_message("\n\n".join([lighteval_task_config.sample_to_fewshot(sample) for sample in fewshots])), | ||
| ) | ||
|
|
||
| return Task(dataset=dataset, solver=solver, scorer=scorers, name=name, epochs=Epochs(epochs, epochs_reducer)) | ||
|
|
||
|
|
||
| def mean_metrics_by_prefix(results_per_model_per_task, sep=":"): | ||
| out = {} | ||
| for model, tasks in results_per_model_per_task.items(): | ||
| pref_metrics = defaultdict(lambda: defaultdict(list)) | ||
| # Collect both per-task metrics and values for prefix aggregation | ||
| per_model_out = {} | ||
| for task_name, metrics in tasks.items(): | ||
| if sep not in task_name: | ||
| # No subtasks: keep metrics as-is for this task | ||
| per_task_vals = {} | ||
| for mname, metric in metrics.items(): | ||
| per_task_vals[mname] = getattr(metric, "value", metric) | ||
| per_model_out[task_name] = per_task_vals | ||
| continue | ||
| prefix = task_name.split(sep, 1)[0] | ||
| # Keep non-averaged task metrics | ||
| per_task_vals = {} | ||
| for mname, metric in metrics.items(): | ||
| value = getattr(metric, "value", metric) | ||
| per_task_vals[mname] = value | ||
| pref_metrics[prefix][mname].append(value) | ||
| per_model_out[task_name] = per_task_vals | ||
| # Add the averaged metrics per prefix | ||
| for p, md in pref_metrics.items(): | ||
| per_model_out[p] = {m: sum(v) / len(v) for m, v in md.items()} | ||
| out[model] = per_model_out | ||
| return out | ||
|
|
||
|
|
||
| def results_to_markdown_table( | ||
| results_per_model_per_task, | ||
| metric: str = "accuracy", | ||
| stderr_metric: str = "stderr", | ||
| max_total_columns: int | None = None, | ||
| means_only_task_threshold: int = 10, | ||
| ) -> str: | ||
| cols = _collect_columns(results_per_model_per_task, means_only_task_threshold, max_total_columns) | ||
|
|
||
| writer = MarkdownTableWriter() | ||
| writer.headers = ["Model"] + cols | ||
|
|
||
| rows = [] | ||
| for model in sorted(results_per_model_per_task.keys()): | ||
| row = [model] | ||
| data = results_per_model_per_task[model] | ||
| for col in cols: | ||
| row.append(_format_metric_cell(data, col, metric, stderr_metric)) | ||
| rows.append(row) | ||
|
|
||
| writer.value_matrix = rows | ||
| return writer.dumps() | ||
|
Comment on lines
+122
to
+143
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. could you reuse the output functions we already have? |
||
|
|
||
|
|
||
| def _collect_columns( | ||
| results_per_model_per_task, means_only_task_threshold: int, max_total_columns: int | None | ||
| ) -> list[str]: | ||
| all_cols = set() | ||
| for model_data in results_per_model_per_task.values(): | ||
| all_cols.update(model_data.keys()) | ||
| agg_cols = sorted([c for c in all_cols if ":" not in c]) | ||
| task_cols = sorted([c for c in all_cols if ":" in c]) | ||
|
|
||
| if len(task_cols) > means_only_task_threshold: | ||
| logger.info( | ||
| f"Only showing the meaned tasks (aggregates only) because there are more than {means_only_task_threshold} tasks" | ||
| ) | ||
| return agg_cols | ||
|
|
||
| cols = agg_cols + task_cols | ||
| if max_total_columns is not None and len(cols) > max_total_columns: | ||
| keep_left = max(1, max_total_columns // 2) | ||
| keep_right = max_total_columns - keep_left | ||
| left_cols = cols[:keep_left] | ||
| right_cols = cols[-keep_right:] if keep_right > 0 else [] | ||
| return left_cols + ["…"] + right_cols | ||
| return cols | ||
|
|
||
|
|
||
| def _format_metric_cell(data: dict, col: str, metric: str, stderr_metric: str) -> str: | ||
| if col == "…": | ||
| return "…" | ||
| metrics = data.get(col) | ||
| if not metrics: | ||
| return "-" | ||
| val = metrics.get(metric) | ||
| if isinstance(val, dict): | ||
| val = val.get("value", None) | ||
| if val is not None: | ||
| return "%.2f" % val | ||
| return "-" | ||
|
|
||
|
|
||
| def eval( | ||
| models: list[str], | ||
| tasks: str, | ||
| epochs: int = 1, | ||
| epochs_reducer: Literal["mean", "median", "mode", "max", "at_least_{n}", "ass_at_{k}"] | None = None, | ||
| max_connections: int = 50, | ||
| timeout: int = 30, | ||
| retry_on_error: int = 1, | ||
| max_retries: int = 5, | ||
| log_dir: str = "lighteval-logs", | ||
| log_dir_allow_dirty: bool = True, | ||
| display: Literal["rich", "full", "conversations", "plain", "log", "none"] = "rich", | ||
| model_config: str | None = None, | ||
| max_samples: int | None = None, | ||
| max_tasks: int | None = None, | ||
| ): | ||
| from lighteval.tasks.registry import Registry | ||
|
|
||
| registry = Registry(tasks=tasks, custom_tasks=None, load_multilingual=False) | ||
| task_configs = registry.task_to_configs | ||
| inspect_ai_tasks = [] | ||
|
|
||
| for task_name, task_configs in task_configs.items(): | ||
| for task_config in task_configs: | ||
| inspect_ai_tasks.append(get_inspect_ai_task(task_config)) | ||
|
|
||
| if model_config is not None and model_config.endswith(".yaml"): | ||
| model_config = InspectAIModelConfig.from_path(model_config).dict() | ||
| elif model_config is not None: | ||
| model_config = InspectAIModelConfig.from_args(model_config).dict() | ||
| else: | ||
| model_config = {} | ||
|
|
||
| success, logs = inspect_ai_eval_set( | ||
| inspect_ai_tasks, | ||
| model=models, | ||
| max_connections=max_connections, | ||
| timeout=timeout, | ||
| retry_on_error=retry_on_error, | ||
| max_retries=max_retries, | ||
| limit=max_samples, | ||
| max_tasks=max_tasks, | ||
| log_dir=log_dir, | ||
| log_dir_allow_dirty=log_dir_allow_dirty, | ||
| display=display, | ||
| **model_config, | ||
| ) | ||
|
|
||
| if not success: | ||
| return | ||
|
|
||
| results_per_model_per_task = {} | ||
|
|
||
| for model in models: | ||
| results_per_model_per_task[model] = {} | ||
|
|
||
| for log in logs: | ||
| if log.eval.model == model: | ||
| results_per_model_per_task[model][log.eval.task] = log.results.metrics | ||
|
|
||
| results_per_model_per_task_agg = mean_metrics_by_prefix(results_per_model_per_task) | ||
| table_md = results_to_markdown_table(results_per_model_per_task_agg) | ||
| print() | ||
| print(table_md) | ||
| print(f"results saved to {log_dir}") | ||
| print(f'run "inspect view --log-dir {log_dir}" to view the results') | ||
|
|
||
|
|
||
| if __name__ == "__main__": | ||
| task = "lighteval|gsm8k|5,lighteval|gsm8k|1,lighteval|gsm8k|0" | ||
| task = "lighteval|agieval|0" | ||
| task = "lighteval|hle|0" | ||
| task = "lighteval|ifeval|0" | ||
| task = "lighteval|gpqa|0" | ||
| task = "lighteval|ifbench_test|0" | ||
| model = "hf-inference-providers/meta-llama/Llama-3.1-8B-Instruct:nebius" | ||
| eval(models=[model], tasks=task) | ||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -25,6 +25,8 @@ | |
|
|
||
| import numpy as np | ||
| from aenum import Enum | ||
| from inspect_ai.scorer import Score, Target, accuracy, scorer, stderr | ||
| from inspect_ai.solver import TaskState | ||
|
|
||
| from lighteval.metrics.dynamic_metrics import MultilingualExtractiveMatchMetric | ||
| from lighteval.metrics.harness_compatibility.drop import DropMetrics | ||
|
|
@@ -66,6 +68,8 @@ | |
| ExprExtractionConfig, | ||
| IndicesExtractionConfig, | ||
| LatexExtractionConfig, | ||
| extract_target_from_pred, | ||
| get_extraction_regexes_inspect, | ||
| ) | ||
| from lighteval.metrics.utils.metric_utils import ( | ||
| CorpusLevelMetric, | ||
|
|
@@ -77,6 +81,66 @@ | |
| from lighteval.utils.language import Language | ||
|
|
||
|
|
||
| @scorer(metrics=[accuracy()]) | ||
| def math_scorer(): | ||
clefourrier marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| gold_extraction_target = (ExprExtractionConfig(),) | ||
| pred_extraction_target = (ExprExtractionConfig(), LatexExtractionConfig(boxed_match_priority=0)) | ||
| language = Language.ENGLISH | ||
| fallback_mode = "first_match" | ||
| extraction_mode = "first_match" | ||
| timeout_seconds = 5 | ||
|
|
||
| gold_extraction_regexes = get_extraction_regexes_inspect(gold_extraction_target, language, len_choices=1) | ||
| pred_extraction_regexes = get_extraction_regexes_inspect(pred_extraction_target, language, len_choices=1) | ||
|
|
||
| async def score(state: TaskState, target: Target): | ||
| extracted_predictions = extract_target_from_pred( | ||
| state.output.completion, pred_extraction_regexes, fallback_mode, extraction_mode, timeout_seconds | ||
| ) | ||
| extracted_gold = extract_target_from_pred( | ||
| target.text, gold_extraction_regexes, fallback_mode, extraction_mode, timeout_seconds | ||
| ) | ||
| return Score( | ||
| value="C" if extracted_predictions == extracted_gold else "I", | ||
| explanation=state.output.completion, | ||
| answer=str(extracted_predictions), | ||
| ) | ||
NathanHB marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
|
||
| return score | ||
|
|
||
|
|
||
| @scorer(metrics=[accuracy(), stderr()]) | ||
| def multichoice_scorer(): | ||
| language = Language.ENGLISH | ||
| gold_extraction_target = ( | ||
| IndicesExtractionConfig(prefix_for_extraction="NativeLetters", try_extract_without_anchor=True), | ||
| ) | ||
| pred_extraction_target = ( | ||
| IndicesExtractionConfig(prefix_for_extraction="NativeLetters", try_extract_without_anchor=True), | ||
| ) | ||
| fallback_mode = "first_match" | ||
| extraction_mode = "first_match" | ||
| timeout_seconds = 5 | ||
|
|
||
| gold_extraction_regexes = get_extraction_regexes_inspect(gold_extraction_target, language) | ||
| pred_extraction_regexes = get_extraction_regexes_inspect(pred_extraction_target, language) | ||
|
Comment on lines
+114
to
+127
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. this behavior of nested functions behaving as classes is really meh for legibility, customizability and maintenability There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. definetely could be better ! but that's how inspect is expecting it. Will work on a better format once we start having more metrics compatible with it. |
||
|
|
||
| async def score(state: TaskState, target: Target): | ||
| extracted_predictions = extract_target_from_pred( | ||
| state.output.completion, pred_extraction_regexes, fallback_mode, extraction_mode, timeout_seconds | ||
| ) | ||
| extracted_gold = extract_target_from_pred( | ||
| target.text, gold_extraction_regexes, fallback_mode, extraction_mode, timeout_seconds | ||
| ) | ||
| return Score( | ||
| value="C" if extracted_predictions == extracted_gold else "I", | ||
NathanHB marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| explanation=state.output.completion, | ||
| answer=str(extracted_predictions), | ||
| ) | ||
NathanHB marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
|
||
| return score | ||
|
|
||
|
|
||
| class Metrics(Enum): | ||
| acc_golds_likelihood = SampleLevelMetric( # todo: we need a better name for this! | ||
| metric_name="acc", | ||
|
|
||
Uh oh!
There was an error while loading. Please reload this page.