Skip to content

Fix arg merging of sknet, old seresnet. Fix #2470 #2471

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 14, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 18 additions & 18 deletions timm/models/senet.py
Original file line number Diff line number Diff line change
Expand Up @@ -404,62 +404,62 @@ def _cfg(url='', **kwargs):
@register_model
def legacy_seresnet18(pretrained=False, **kwargs) -> SENet:
model_args = dict(
block=SEResNetBlock, layers=[2, 2, 2, 2], groups=1, reduction=16, **kwargs)
return _create_senet('legacy_seresnet18', pretrained, **model_args)
block=SEResNetBlock, layers=[2, 2, 2, 2], groups=1, reduction=16)
return _create_senet('legacy_seresnet18', pretrained, **dict(model_args, **kwargs))


@register_model
def legacy_seresnet34(pretrained=False, **kwargs) -> SENet:
model_args = dict(
block=SEResNetBlock, layers=[3, 4, 6, 3], groups=1, reduction=16, **kwargs)
return _create_senet('legacy_seresnet34', pretrained, **model_args)
block=SEResNetBlock, layers=[3, 4, 6, 3], groups=1, reduction=16)
return _create_senet('legacy_seresnet34', pretrained, **dict(model_args, **kwargs))


@register_model
def legacy_seresnet50(pretrained=False, **kwargs) -> SENet:
model_args = dict(
block=SEResNetBottleneck, layers=[3, 4, 6, 3], groups=1, reduction=16, **kwargs)
return _create_senet('legacy_seresnet50', pretrained, **model_args)
block=SEResNetBottleneck, layers=[3, 4, 6, 3], groups=1, reduction=16)
return _create_senet('legacy_seresnet50', pretrained, **dict(model_args, **kwargs))


@register_model
def legacy_seresnet101(pretrained=False, **kwargs) -> SENet:
model_args = dict(
block=SEResNetBottleneck, layers=[3, 4, 23, 3], groups=1, reduction=16, **kwargs)
return _create_senet('legacy_seresnet101', pretrained, **model_args)
block=SEResNetBottleneck, layers=[3, 4, 23, 3], groups=1, reduction=16)
return _create_senet('legacy_seresnet101', pretrained, **dict(model_args, **kwargs))


@register_model
def legacy_seresnet152(pretrained=False, **kwargs) -> SENet:
model_args = dict(
block=SEResNetBottleneck, layers=[3, 8, 36, 3], groups=1, reduction=16, **kwargs)
return _create_senet('legacy_seresnet152', pretrained, **model_args)
block=SEResNetBottleneck, layers=[3, 8, 36, 3], groups=1, reduction=16)
return _create_senet('legacy_seresnet152', pretrained, **dict(model_args, **kwargs))


@register_model
def legacy_senet154(pretrained=False, **kwargs) -> SENet:
model_args = dict(
block=SEBottleneck, layers=[3, 8, 36, 3], groups=64, reduction=16,
downsample_kernel_size=3, downsample_padding=1, inplanes=128, input_3x3=True, **kwargs)
return _create_senet('legacy_senet154', pretrained, **model_args)
downsample_kernel_size=3, downsample_padding=1, inplanes=128, input_3x3=True)
return _create_senet('legacy_senet154', pretrained, **dict(model_args, **kwargs))


@register_model
def legacy_seresnext26_32x4d(pretrained=False, **kwargs) -> SENet:
model_args = dict(
block=SEResNeXtBottleneck, layers=[2, 2, 2, 2], groups=32, reduction=16, **kwargs)
return _create_senet('legacy_seresnext26_32x4d', pretrained, **model_args)
block=SEResNeXtBottleneck, layers=[2, 2, 2, 2], groups=32, reduction=16)
return _create_senet('legacy_seresnext26_32x4d', pretrained, **dict(model_args, **kwargs))


@register_model
def legacy_seresnext50_32x4d(pretrained=False, **kwargs) -> SENet:
model_args = dict(
block=SEResNeXtBottleneck, layers=[3, 4, 6, 3], groups=32, reduction=16, **kwargs)
return _create_senet('legacy_seresnext50_32x4d', pretrained, **model_args)
block=SEResNeXtBottleneck, layers=[3, 4, 6, 3], groups=32, reduction=16)
return _create_senet('legacy_seresnext50_32x4d', pretrained, **dict(model_args, **kwargs))


@register_model
def legacy_seresnext101_32x4d(pretrained=False, **kwargs) -> SENet:
model_args = dict(
block=SEResNeXtBottleneck, layers=[3, 4, 23, 3], groups=32, reduction=16, **kwargs)
return _create_senet('legacy_seresnext101_32x4d', pretrained, **model_args)
block=SEResNeXtBottleneck, layers=[3, 4, 23, 3], groups=32, reduction=16)
return _create_senet('legacy_seresnext101_32x4d', pretrained, **dict(model_args, **kwargs))
20 changes: 10 additions & 10 deletions timm/models/sknet.py
Original file line number Diff line number Diff line change
Expand Up @@ -181,8 +181,8 @@ def skresnet18(pretrained=False, **kwargs) -> ResNet:
sk_kwargs = dict(rd_ratio=1 / 8, rd_divisor=16, split_input=True)
model_args = dict(
block=SelectiveKernelBasic, layers=[2, 2, 2, 2], block_args=dict(sk_kwargs=sk_kwargs),
zero_init_last=False, **kwargs)
return _create_skresnet('skresnet18', pretrained, **model_args)
zero_init_last=False)
return _create_skresnet('skresnet18', pretrained, **dict(model_args, **kwargs))


@register_model
Expand All @@ -195,8 +195,8 @@ def skresnet34(pretrained=False, **kwargs) -> ResNet:
sk_kwargs = dict(rd_ratio=1 / 8, rd_divisor=16, split_input=True)
model_args = dict(
block=SelectiveKernelBasic, layers=[3, 4, 6, 3], block_args=dict(sk_kwargs=sk_kwargs),
zero_init_last=False, **kwargs)
return _create_skresnet('skresnet34', pretrained, **model_args)
zero_init_last=False)
return _create_skresnet('skresnet34', pretrained, **dict(model_args, **kwargs))


@register_model
Expand All @@ -209,8 +209,8 @@ def skresnet50(pretrained=False, **kwargs) -> ResNet:
sk_kwargs = dict(split_input=True)
model_args = dict(
block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], block_args=dict(sk_kwargs=sk_kwargs),
zero_init_last=False, **kwargs)
return _create_skresnet('skresnet50', pretrained, **model_args)
zero_init_last=False)
return _create_skresnet('skresnet50', pretrained, **dict(model_args, **kwargs))


@register_model
Expand All @@ -223,8 +223,8 @@ def skresnet50d(pretrained=False, **kwargs) -> ResNet:
sk_kwargs = dict(split_input=True)
model_args = dict(
block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True,
block_args=dict(sk_kwargs=sk_kwargs), zero_init_last=False, **kwargs)
return _create_skresnet('skresnet50d', pretrained, **model_args)
block_args=dict(sk_kwargs=sk_kwargs), zero_init_last=False)
return _create_skresnet('skresnet50d', pretrained, **dict(model_args, **kwargs))


@register_model
Expand All @@ -235,6 +235,6 @@ def skresnext50_32x4d(pretrained=False, **kwargs) -> ResNet:
sk_kwargs = dict(rd_ratio=1/16, rd_divisor=32, split_input=False)
model_args = dict(
block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4,
block_args=dict(sk_kwargs=sk_kwargs), zero_init_last=False, **kwargs)
return _create_skresnet('skresnext50_32x4d', pretrained, **model_args)
block_args=dict(sk_kwargs=sk_kwargs), zero_init_last=False)
return _create_skresnet('skresnext50_32x4d', pretrained, **dict(model_args, **kwargs))

Loading