Skip to content

Commit

Permalink
Prepare for release 3.1.0
Browse files Browse the repository at this point in the history
  • Loading branch information
Narsil committed Jan 30, 2025
1 parent 065aabb commit f01862c
Show file tree
Hide file tree
Showing 11 changed files with 23 additions and 23 deletions.
14 changes: 7 additions & 7 deletions Cargo.lock

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ default-members = [
resolver = "2"

[workspace.package]
version = "3.0.2-dev0"
version = "3.1.1-dev0"
edition = "2021"
authors = ["Olivier Dehaene"]
homepage = "https://github.com/huggingface/text-generation-inference"
Expand Down
6 changes: 3 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,7 @@ model=HuggingFaceH4/zephyr-7b-beta
volume=$PWD/data

docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:3.0.2 --model-id $model
ghcr.io/huggingface/text-generation-inference:3.1.0 --model-id $model
```

And then you can make requests like
Expand Down Expand Up @@ -121,7 +121,7 @@ curl localhost:8080/v1/chat/completions \

**Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.

**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/installation_amd#using-tgi-with-amd-gpus). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.2-rocm --model-id $model` instead of the command above.
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/installation_amd#using-tgi-with-amd-gpus). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.1.0-rocm --model-id $model` instead of the command above.

To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
```
Expand Down Expand Up @@ -152,7 +152,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
token=<your cli READ token>

docker run --gpus all --shm-size 1g -e HF_TOKEN=$token -p 8080:80 -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:3.0.2 --model-id $model
ghcr.io/huggingface/text-generation-inference:3.1.0 --model-id $model
```

### A note on Shared Memory (shm)
Expand Down
2 changes: 1 addition & 1 deletion docs/openapi.json
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
"name": "Apache 2.0",
"url": "https://www.apache.org/licenses/LICENSE-2.0"
},
"version": "3.0.2-dev0"
"version": "3.1.0-dev0"
},
"paths": {
"/": {
Expand Down
2 changes: 1 addition & 1 deletion docs/source/basic_tutorials/gated_model_access.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,6 @@ docker run --gpus all \
--shm-size 1g \
-e HF_TOKEN=$token \
-p 8080:80 \
-v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.2 \
-v $volume:/data ghcr.io/huggingface/text-generation-inference:3.1.0 \
--model-id $model
```
6 changes: 3 additions & 3 deletions docs/source/conceptual/quantization.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,15 +19,15 @@ bitsandbytes is a library used to apply 8-bit and 4-bit quantization to models.
In TGI, you can use 8-bit quantization by adding `--quantize bitsandbytes` like below 👇

```bash
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.2 --model-id $model --quantize bitsandbytes
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.1.0 --model-id $model --quantize bitsandbytes
```

4-bit quantization is also possible with bitsandbytes. You can choose one of the following 4-bit data types: 4-bit float (`fp4`), or 4-bit `NormalFloat` (`nf4`). These data types were introduced in the context of parameter-efficient fine-tuning, but you can apply them for inference by automatically converting the model weights on load.

In TGI, you can use 4-bit quantization by adding `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` like below 👇

```bash
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.2 --model-id $model --quantize bitsandbytes-nf4
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.1.0 --model-id $model --quantize bitsandbytes-nf4
```

You can get more information about 8-bit quantization by reading this [blog post](https://huggingface.co/blog/hf-bitsandbytes-integration), and 4-bit quantization by reading [this blog post](https://huggingface.co/blog/4bit-transformers-bitsandbytes).
Expand All @@ -48,7 +48,7 @@ $$({\hat{W}_{l}}^{*} = argmin_{\hat{W_{l}}} ||W_{l}X-\hat{W}_{l}X||^{2}_{2})$$
TGI allows you to both run an already GPTQ quantized model (see available models [here](https://huggingface.co/models?search=gptq)) or quantize a model of your choice using quantization script. You can run a quantized model by simply passing --quantize like below 👇

```bash
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.2 --model-id $model --quantize gptq
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.1.0 --model-id $model --quantize gptq
```

Note that TGI's GPTQ implementation doesn't use [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) under the hood. However, models quantized using AutoGPTQ or Optimum can still be served by TGI.
Expand Down
2 changes: 1 addition & 1 deletion docs/source/installation_amd.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
docker run --rm -it --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
--device=/dev/kfd --device=/dev/dri --group-add video \
--ipc=host --shm-size 256g --net host -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:3.0.2-rocm \
ghcr.io/huggingface/text-generation-inference:3.1.0-rocm \
--model-id $model
```

Expand Down
4 changes: 2 additions & 2 deletions docs/source/installation_intel.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
docker run --rm --privileged --cap-add=sys_nice \
--device=/dev/dri \
--ipc=host --shm-size 1g --net host -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:3.0.2-intel-xpu \
ghcr.io/huggingface/text-generation-inference:3.1.0-intel-xpu \
--model-id $model --cuda-graphs 0
```

Expand All @@ -29,7 +29,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
docker run --rm --privileged --cap-add=sys_nice \
--device=/dev/dri \
--ipc=host --shm-size 1g --net host -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:3.0.2-intel-cpu \
ghcr.io/huggingface/text-generation-inference:3.1.0-intel-cpu \
--model-id $model --cuda-graphs 0
```

Expand Down
2 changes: 1 addition & 1 deletion docs/source/installation_nvidia.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ model=teknium/OpenHermes-2.5-Mistral-7B
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run

docker run --gpus all --shm-size 64g -p 8080:80 -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:3.0.2 \
ghcr.io/huggingface/text-generation-inference:3.1.0 \
--model-id $model
```

Expand Down
4 changes: 2 additions & 2 deletions docs/source/quicktour.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ model=teknium/OpenHermes-2.5-Mistral-7B
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run

docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:3.0.2 \
ghcr.io/huggingface/text-generation-inference:3.1.0 \
--model-id $model
```

Expand Down Expand Up @@ -96,7 +96,7 @@ curl 127.0.0.1:8080/generate \
To see all possible deploy flags and options, you can use the `--help` flag. It's possible to configure the number of shards, quantization, generation parameters, and more.

```bash
docker run ghcr.io/huggingface/text-generation-inference:3.0.2 --help
docker run ghcr.io/huggingface/text-generation-inference:3.1.0 --help
```

</Tip>
2 changes: 1 addition & 1 deletion docs/source/reference/api_reference.md
Original file line number Diff line number Diff line change
Expand Up @@ -163,7 +163,7 @@ hub = {

# create Hugging Face Model Class
huggingface_model = HuggingFaceModel(
image_uri=get_huggingface_llm_image_uri("huggingface",version="3.0.2"),
image_uri=get_huggingface_llm_image_uri("huggingface",version="3.1.0"),
env=hub,
role=role,
)
Expand Down

0 comments on commit f01862c

Please sign in to comment.