Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add initial support for compressed-tensors checkpoints #2732

Merged
merged 1 commit into from
Nov 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -247,7 +247,7 @@ COPY server/Makefile server/Makefile
RUN cd server && \
make gen-server && \
pip install -r requirements_cuda.txt && \
pip install ".[bnb, accelerate, marlin, moe, quantize, peft, outlines]" --no-cache-dir && \
pip install ".[bnb, accelerate, compressed-tensors, marlin, moe, quantize, peft, outlines]" --no-cache-dir && \
pip install nvidia-nccl-cu12==2.22.3

ENV LD_PRELOAD=/opt/conda/lib/python3.11/site-packages/nvidia/nccl/lib/libnccl.so.2
Expand Down
2 changes: 1 addition & 1 deletion Dockerfile_amd
Original file line number Diff line number Diff line change
Expand Up @@ -296,7 +296,7 @@ COPY server/Makefile server/Makefile
RUN cd server && \
make gen-server && \
pip install -r requirements_rocm.txt && \
pip install ".[accelerate, peft, outlines]" --no-cache-dir
pip install ".[accelerate, compressed-tensors, peft, outlines]" --no-cache-dir

# Install benchmarker
COPY --from=builder /usr/src/target/release-opt/text-generation-benchmark /usr/local/bin/text-generation-benchmark
Expand Down
2 changes: 1 addition & 1 deletion Dockerfile_intel
Original file line number Diff line number Diff line change
Expand Up @@ -102,7 +102,7 @@ COPY server/Makefile server/Makefile
RUN cd server && \
make gen-server && \
pip install -r requirements_intel.txt && \
pip install ".[accelerate, peft, outlines]" --no-cache-dir
pip install ".[accelerate, compressed-tensors, peft, outlines]" --no-cache-dir

ENV CCL_ROOT=/opt/intel/oneapi/ccl/latest
ENV I_MPI_ROOT=/opt/intel/oneapi/mpi/latest
Expand Down
19 changes: 10 additions & 9 deletions docs/source/reference/launcher.md
Original file line number Diff line number Diff line change
Expand Up @@ -62,15 +62,16 @@ Options:
[env: QUANTIZE=]

Possible values:
- awq: 4 bit quantization. Requires a specific AWQ quantized model: <https://hf.co/models?search=awq>. Should replace GPTQ models wherever possible because of the better latency
- eetq: 8 bit quantization, doesn't require specific model. Should be a drop-in replacement to bitsandbytes with much better performance. Kernels are from <https://github.com/NetEase-FuXi/EETQ.git>
- exl2: Variable bit quantization. Requires a specific EXL2 quantized model: <https://hf.co/models?search=exl2>. Requires exllama2 kernels and does not support tensor parallelism (num_shard > 1)
- gptq: 4 bit quantization. Requires a specific GTPQ quantized model: <https://hf.co/models?search=gptq>. text-generation-inference will use exllama (faster) kernels wherever possible, and use triton kernel (wider support) when it's not. AWQ has faster kernels
- marlin: 4 bit quantization. Requires a specific Marlin quantized model: <https://hf.co/models?search=marlin>
- bitsandbytes: Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half, but it is known that the model will be much slower to run than the native f16
- bitsandbytes-nf4: Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x, but it is known that the model will be much slower to run than the native f16
- bitsandbytes-fp4: Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better perplexity performance for you model
- fp8: [FP8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/) (e4m3) works on H100 and above This dtype has native ops should be the fastest if available. This is currently not the fastest because of local unpacking + padding to satisfy matrix multiplication limitations
- awq: 4 bit quantization. Requires a specific AWQ quantized model: <https://hf.co/models?search=awq>. Should replace GPTQ models wherever possible because of the better latency
- compressed-tensors: Compressed tensors, which can be a mixture of different quantization methods
- eetq: 8 bit quantization, doesn't require specific model. Should be a drop-in replacement to bitsandbytes with much better performance. Kernels are from <https://github.com/NetEase-FuXi/EETQ.git>
- exl2: Variable bit quantization. Requires a specific EXL2 quantized model: <https://hf.co/models?search=exl2>. Requires exllama2 kernels and does not support tensor parallelism (num_shard > 1)
- gptq: 4 bit quantization. Requires a specific GTPQ quantized model: <https://hf.co/models?search=gptq>. text-generation-inference will use exllama (faster) kernels wherever possible, and use triton kernel (wider support) when it's not. AWQ has faster kernels
- marlin: 4 bit quantization. Requires a specific Marlin quantized model: <https://hf.co/models?search=marlin>
- bitsandbytes: Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half, but it is known that the model will be much slower to run than the native f16
- bitsandbytes-nf4: Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x, but it is known that the model will be much slower to run than the native f16
- bitsandbytes-fp4: Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better perplexity performance for you model
- fp8: [FP8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/) (e4m3) works on H100 and above This dtype has native ops should be the fastest if available. This is currently not the fastest because of local unpacking + padding to satisfy matrix multiplication limitations

```
## SPECULATE
Expand Down
7 changes: 4 additions & 3 deletions flake.lock

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion flake.nix
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
inputs.nixpkgs.follows = "tgi-nix/nixpkgs";
};
nix-filter.url = "github:numtide/nix-filter";
tgi-nix.url = "github:huggingface/text-generation-inference-nix";
tgi-nix.url = "github:huggingface/text-generation-inference-nix/compressed-tensors-0.7.1";
nixpkgs.follows = "tgi-nix/nixpkgs";
flake-utils.url = "github:numtide/flake-utils";
rust-overlay = {
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
{
"details": {
"best_of_sequences": null,
"finish_reason": "length",
"generated_tokens": 10,
"prefill": [
{
"id": 128000,
"logprob": null,
"text": "<|begin_of_text|>"
},
{
"id": 3923,
"logprob": -7.609375,
"text": "What"
},
{
"id": 374,
"logprob": -0.92529297,
"text": " is"
},
{
"id": 5655,
"logprob": -10.0,
"text": " deep"
},
{
"id": 6975,
"logprob": -0.94628906,
"text": " learning"
},
{
"id": 30,
"logprob": -2.9042969,
"text": "?"
}
],
"seed": null,
"tokens": [
{
"id": 18682,
"logprob": -0.8769531,
"special": false,
"text": " Deep"
},
{
"id": 6975,
"logprob": -0.0076942444,
"special": false,
"text": " learning"
},
{
"id": 374,
"logprob": -0.25073242,
"special": false,
"text": " is"
},
{
"id": 264,
"logprob": -0.097595215,
"special": false,
"text": " a"
},
{
"id": 955,
"logprob": -0.921875,
"special": false,
"text": " type"
},
{
"id": 315,
"logprob": -0.00027918816,
"special": false,
"text": " of"
},
{
"id": 21075,
"logprob": -0.5527344,
"special": false,
"text": " artificial"
},
{
"id": 11478,
"logprob": -0.042541504,
"special": false,
"text": " intelligence"
},
{
"id": 320,
"logprob": -0.38891602,
"special": false,
"text": " ("
},
{
"id": 15836,
"logprob": -0.0011043549,
"special": false,
"text": "AI"
}
],
"top_tokens": null
},
"generated_text": " Deep learning is a type of artificial intelligence (AI"
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
{
"details": {
"best_of_sequences": null,
"finish_reason": "length",
"generated_tokens": 10,
"prefill": [
{
"id": 128000,
"logprob": null,
"text": "<|begin_of_text|>"
},
{
"id": 3923,
"logprob": -7.609375,
"text": "What"
},
{
"id": 374,
"logprob": -0.92529297,
"text": " is"
},
{
"id": 5655,
"logprob": -10.0,
"text": " deep"
},
{
"id": 6975,
"logprob": -0.94628906,
"text": " learning"
}
],
"seed": 0,
"tokens": [
{
"id": 5380,
"logprob": -0.23840332,
"special": false,
"text": "?\n"
},
{
"id": 34564,
"logprob": 0.0,
"special": false,
"text": "Deep"
},
{
"id": 6975,
"logprob": 0.0,
"special": false,
"text": " learning"
},
{
"id": 11,
"logprob": 0.0,
"special": false,
"text": ","
},
{
"id": 1101,
"logprob": -1.2011719,
"special": false,
"text": " also"
},
{
"id": 3967,
"logprob": 0.0,
"special": false,
"text": " known"
},
{
"id": 439,
"logprob": 0.0,
"special": false,
"text": " as"
},
{
"id": 30828,
"logprob": 0.0,
"special": false,
"text": " neural"
},
{
"id": 4009,
"logprob": -0.6777344,
"special": false,
"text": " network"
},
{
"id": 477,
"logprob": 0.0,
"special": false,
"text": " or"
}
],
"top_tokens": null
},
"generated_text": "What is deep learning?\nDeep learning, also known as neural network or"
}
Loading
Loading