Skip to content

imanoop7/Ollama-OCR

Repository files navigation

Stargazers Commit Activity Last Commit

Ollama OCR Logo

Ollama OCR

A powerful OCR (Optical Character Recognition) package that uses state-of-the-art vision language models through Ollama to extract text from images and PDF. Available both as a Python package and a Streamlit web application.

🌟 Features

Supports PDF and Images (New! 🆕)

  • Multiple Vision Models Support

    • LLaVA: Efficient vision-language model for real-time processing (LLaVa model can generate wrong output sometimes)
    • Llama 3.2 Vision: Advanced model with high accuracy for complex documents
    • Granite3.2-vision: A compact and efficient vision-language model, specifically designed for visual document understanding, enabling automated content extraction from tables, charts, infographics, plots, diagrams, and more.
    • Moondream: Small vision language model designed to run efficiently on edge devices.
    • Minicpm-v: MiniCPM-V 2.6 can process images with any aspect ratio and up to 1.8 million pixels (e.g., 1344x1344).
  • Multiple Output Formats

    • Markdown: Preserves text formatting with headers and lists
    • Plain Text: Clean, simple text extraction
    • JSON: Structured data format
    • Structured: Tables and organized data
    • Key-Value Pairs: Extracts labeled information
    • Table: Extract all tabular data.
  • Batch Processing

    • Process multiple images in parallel
    • Progress tracking for each image
    • Image preprocessing (resize, normalize, etc.)
  • Custom Prompts

    • Override default prompts with custom instructions for text extraction.

📦 Package Installation

pip install ollama-ocr

🚀 Quick Start

Prerequisites

  1. Install Ollama
  2. Pull the required model:
ollama pull llama3.2-vision:11b
ollama pull granite3.2-vision
ollama pull moondream
ollama pull minicpm-v

Using the Package

Single File Processing

from ollama_ocr import OCRProcessor

# Initialize OCR processor
ocr = OCRProcessor(model_name='llama3.2-vision:11b', base_url="http://host.docker.internal:11434/api/generate")  # You can use any vision model available on Ollama
# you can pass your custom ollama api

# Process an image
result = ocr.process_image(
    image_path="path/to/your/image.png", # path to your pdf files "path/to/your/file.pdf"
    format_type="markdown",  # Options: markdown, text, json, structured, key_value
    custom_prompt="Extract all text, focusing on dates and names.", # Optional custom prompt
    language="English" # Specify the language of the text (New! 🆕)
)
print(result)

Batch File

from ollama_ocr import OCRProcessor

# Initialize OCR processor
ocr = OCRProcessor(model_name='llama3.2-vision:11b', max_workers=4)  # max workers for parallel processing

# Process multiple images
# Process multiple images with progress tracking
batch_results = ocr.process_batch(
    input_path="path/to/images/folder",  # Directory or list of image paths
    format_type="markdown",
    recursive=True,  # Search subdirectories
    preprocess=True,  # Enable image preprocessing
    custom_prompt="Extract all text, focusing on dates and names.", # Optional custom prompt
    language="English" # Specify the language of the text (New! 🆕)
)
# Access results
for file_path, text in batch_results['results'].items():
    print(f"\nFile: {file_path}")
    print(f"Extracted Text: {text}")

# View statistics
print("\nProcessing Statistics:")
print(f"Total images: {batch_results['statistics']['total']}")
print(f"Successfully processed: {batch_results['statistics']['successful']}")
print(f"Failed: {batch_results['statistics']['failed']}")

📋 Output Format Details

  1. Markdown Format: The output is a markdown string containing the extracted text from the image.
  2. Text Format: The output is a plain text string containing the extracted text from the image.
  3. JSON Format: The output is a JSON object containing the extracted text from the image.
  4. Structured Format: The output is a structured object containing the extracted text from the image.
  5. Key-Value Format: The output is a dictionary containing the extracted text from the image.
  6. Table Format: Extract all tabular data.

🌐 Streamlit Web Application(supports batch processing)

  • User-Friendly Interface
    • Drag-and-drop file upload
    • Real-time processing
    • Download extracted text
    • Image preview with details
    • Responsive design
    • Language Selection: Specify the language for better OCR accuracy. (New! 🆕)
  1. Clone the repository:
git clone https://github.com/imanoop7/Ollama-OCR.git
cd Ollama-OCR
  1. Install dependencies:
pip install -r requirements.txt
  1. Go to the directory where app.py is located:
cd src/ollama_ocr      
  1. Run the Streamlit app:
streamlit run app.py

📒 Example Notebooks

Examples Output

Input Image

Input Image

Sample Output

Sample Output Sample Output

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

Built with Ollama Powered by Vision Models

Star History

Star History Chart

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •