Skip to content
Ing. Jorge Luis Mayorga Taborda edited this page Feb 6, 2025 · 4 revisions

R BiblioSynth

Overview

R BiblioSynth is an advanced bibliometric analysis tool designed to generate publish-ready bibliometric reports. It automates the extraction, processing, and visualization of bibliographic data, including auto-generated conclusions, summaries, and structured outlines. The tool seamlessly integrates with Zotero collections and Scopus/BibTeX files, providing deep insights into research trends, authorship, and publication impact.

Features

  • Automated bibliometric report generation with conclusions and summaries.
  • Import and process Scopus BibTeX and Zotero collections.
  • Perform bibliometric analysis (author impact, collaboration networks, keyword trends, etc.).
  • Fit and visualize growth models (logistic, linear, exponential).
  • Detect outliers and trend change points in time series data.
  • Generate IEEE-styled plots and visualizations.
  • Structured output formats in JSON, CSV, and LaTeX-ready PDF.
  • Apply machine learning techniques for automated insight extraction.

Installation

Prerequisites

Ensure you have the following installed:

  • R (latest version)
  • RStudio (recommended)
  • Required R packages:
    install.packages(c("bibliometrix", "ggplot2", "dplyr", "tidyverse", "jsonlite", "rmarkdown", "knitr"))
  • Python (for optional ML components)

Clone the Repository

git clone https://github.com/jlmayorgaco/r-biblio-synth.git
cd r-biblio-synth

Run the Tool

  1. Open RStudio and load the main script:
    source("main.R")
  2. Follow the interactive prompts to load data and generate reports.

Usage

Example: Running a Systematic Review

# --------------------------------------------------- #
# -- SystematicReview.r ----------------------------- #
# --------------------------------------------------- #

# Source the SystematicReview class definition
source('../../src/SystematicReviewClass.r')

# SystematicReview Class
systematicReview <- SystematicReview$new()

# Add Config Settings
systematicReview$setBibPath("data/scopus.bib")
systematicReview$setTitle("Power Systems Frequency Estimators from 1960 to 2023")
systematicReview$setDate("Wednesday, July 10, 2024 1:50:56 AM")
systematicReview$setQuery("TITLE-ABS-KEY ( power AND system AND frequency AND estimator ) from 1960 to 2023")
systematicReview$setKeywords(c("power", "system", "frequency", "estimator"))

# Load and Init Data
systematicReview$init()

# Check Status and Requirements
systematicReview$do_m0_check_health_status()
systematicReview$do_m0_check_required_columns()
systematicReview$do_m0_cleaning_data()

# Modules
systematicReview$do_m1_main_information()
#systematicReview$do_m2_author_prod_over_time_regression()
#systematicReview$do_m3_authors()
# systematicReview$do_m4_documents()
# systematicReview$do_m5_clusterings()
# systematicReview$do_m6_conceptual_structure()
# systematicReview$do_m7_social_structure()

# Create Report
# systematicReview$do_m8_report()

# systematicReview$do_m9_save()

Contribution

Contributions are welcome! If you'd like to improve R BiblioSynth, follow these steps:

  1. Fork the repository.
  2. Create a new branch (feature-xyz).
  3. Commit your changes with clear messages.
  4. Submit a Pull Request (PR).

License

This project is licensed under the MIT License.

Contact

For any questions or collaboration opportunities, open an Issue or reach out via GitHub Discussions.