Skip to content

kestra-io/plugin-ai

Repository files navigation

Kestra workflow orchestrator

Kestra AI Plugin

Last Version License Github star
Kestra infinitely scalable orchestration and scheduling platform Slack

twitter linkedin youtube


🧠 Overview

Kestra AI Plugin brings AI-native orchestration to Kestra. It enables workflows to leverage large language models (LLMs), vector databases, AI providers, and intelligent agents — declaratively.

From prompt-based completions to full Retrieval-Augmented Generation (RAG) pipelines, this plugin provides all the tools you need to build AI-driven automations within Kestra.


✨ Features

🗣️ Chat & Completion

  • ChatCompletion — generic chat interface for LLMs (OpenAI, Anthropic, Gemini, etc.)
  • Classification — classify text into predefined categories
  • ImageGeneration — create images from text prompts
  • JSONStructuredExtraction — extract structured data (JSON) from unstructured text

🧩 Providers

Supports multiple AI backends:

  • OpenAI, Azure OpenAI, Anthropic, MistralAI, Google VertexAI, Google Gemini
  • Amazon Bedrock, Ollama, LocalAI, OpenRouter, DeepSeek, DashScope
  • WorkersAI (Cloudflare)

Each provider integrates authentication, model selection, and latency tracking through TimingChatModelListener.

🧱 Embeddings

Store and search semantic vector embeddings using:

  • PGVector
  • Elasticsearch
  • Milvus
  • Weaviate
  • Chroma
  • Pinecone
  • Qdrant
  • Redis
  • KestraKVStore
  • MongoDB Atlas

These integrations make it easy to build semantic search, context retrieval, or memory-augmented workflows.

🧠 Memory

Persistent conversational or vector-based memory via:

  • Redis
  • KestraKVStore

🔍 Retrieval & RAG

Tools for Retrieval-Augmented Generation (RAG):

  • IngestDocument — chunk and embed documents
  • Search — perform vector similarity searches
  • ChatCompletion — combine retrieved context with a chat model

🌐 Tools & Agents

The plugin includes a flexible Agent framework and tools that can interact with external systems:

  • AIAgent — orchestrates tool usage dynamically
  • CodeExecution — safely run code blocks
  • KestraTask & KestraFlow — trigger Kestra workflows and tasks from within an agent
  • GoogleCustomWebSearch, TavilyWebSearch — retrieve web content
  • MCP Clients (DockerMcpClient, SseMcpClient, StdioMcpClient, StreamableHttpMcpClient) — connect to external Model Context Protocol tools

⚙️ Example Use Cases

  • Build chatbots that query your data using RAG pipelines.
  • Use LLMs to classify, summarize, or extract information from text.
  • Automate image generation tasks.
  • Integrate AI directly in ETL or data processing pipelines.
  • Orchestrate complex multi-agent reasoning workflows using AIAgent and KestraFlow.

About

No description or website provided.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 20