Skip to content

langchain-ai/chat-langchain

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

298 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chat LangChain

A simple documentation assistant built with LangGraph.

LangGraph Python License

Overview

This is a documentation assistant agent that helps answer questions about LangChain, LangGraph, and LangSmith. It demonstrates how to build a production-ready agent using:

  • LangGraph - For agent orchestration and state management
  • LangChain Agents - For agent creation with middleware support
  • Guardrails - To keep conversations on-topic

Features

  • Documentation Search - Searches official LangChain docs
  • Support KB - Searches the Pylon knowledge base for known issues
  • Link Validation - Verifies URLs before including in responses
  • Guardrails - Filters off-topic queries

Quick Start

Prerequisites

  • Python 3.11+
  • uv (recommended) or pip

Installation

# Clone the repository
git clone https://github.com/langchain-ai/chat-langchain.git
cd chat-langchain

# Install dependencies with uv
uv sync

# Or with pip
pip install -e . "langgraph-cli[inmem]"

Configuration

# Copy environment template
cp .env.example .env

# Edit .env with your API keys

Required Environment Variables

Variable Description
ANTHROPIC_API_KEY Anthropic API key (or use another provider)
MINTLIFY_API_KEY Mintlify API key for docs search
PYLON_API_KEY Pylon API key for support KB

Running Locally

# Start LangGraph development server
uv run langgraph dev

# Or with pip
langgraph dev

Open LangGraph Studio: https://smith.langchain.com/studio/?baseUrl=http://127.0.0.1:2024

Project Structure

├── src/
│   ├── agent/
│   │   ├── docs_graph.py      # Main docs agent
│   │   └── config.py          # Model configuration
│   ├── tools/
│   │   ├── docs_tools.py      # Documentation search
│   │   ├── pylon_tools.py     # Support KB tools
│   │   └── link_check_tools.py # URL validation
│   ├── prompts/
│   │   └── docs_agent_prompt.py
│   └── middleware/
│       ├── guardrails_middleware.py
│       └── retry_middleware.py
├── langgraph.json             # LangGraph configuration
└── pyproject.toml             # Python project config

How It Works

The agent uses a docs-first research strategy:

  1. Guardrails Check - Validates the query is LangChain-related
  2. Documentation Search - Searches official docs via Mintlify
  3. Knowledge Base - Searches Pylon for known issues/solutions
  4. Link Validation - Verifies any URLs before including them
  5. Response Generation - Synthesizes a helpful answer

Deployment

LangGraph Cloud

  1. Push to GitHub
  2. Connect repository in LangSmith
  3. Configure environment variables
  4. Deploy

Resources

License

MIT