A probabilistic programming language for python built on numpy
.
To install from PyPI (recommended):
pip
pip install arianna-ppl
uv
uv add arianna-ppl
To install the absolute latest version from main
:
pip
pip install git+https://github.com/lanl/arianna-ppl.git
uv
uv add git+https://github.com/lanl/arianna-ppl.git
Model Specification (linear regression)
from typing import Optional
import numpy as np
from numpy.random import default_rng
from arianna.distributions import Gamma, Normal
from arianna.ppl.context import Context, Predictive
from arianna.ppl.inference import (
AIES,
AffineInvariantMCMC,
Chain,
LaplaceApproximation,
ParallelAIES,
RandomWalkMetropolis,
)
# Type annotation are, of course, optional. Provided only for clarity.
def linear_regression(
ctx: Context,
X: np.ndarray,
y: Optional[np.ndarray]=None,
bias: bool=True
) -> None:
_, p = X.shape
beta = ctx.rv("beta", Normal(np.zeros(p), 10))
sigma = ctx.rv("sigma", Gamma(1, 1))
mu = ctx.cached("mu", X @ beta)
if bias:
alpha = ctx.rv("alpha", Normal(0, 10))
mu += alpha
ctx.rv("y", Normal(mu, sigma), obs=y)
Simulate data from Prior Predictive
nobs = 100
rng = np.random.default_rng(0)
# Generate random predictors (X).
X = rng.normal(0, 1, (nobs, 1))
# Simulate from prior predictive using Predictive.
sim_truth = Predictive.run(
linear_regression, # supplied model here.
state=dict(sigma=0.7),
rng=rng,
X=X,
# since y is None, the returned dictionary will contain y sampled from it's
# predictive distributions.
y=None,
# Not return cached values, so the sim_truth will contain only parameters
# and y.
return_cached=False,
)
# pop y so that sim_truth contains only model parameters.
y = sim_truth.pop("y")
# Now sim_truth is a dict containing ("beta", "sigma", "alpha").
Affine invariant ensemble sampler
aies = AIES(
linear_regression, # model function.
nwalkers=10, # number of walkers.
# Whether or not to transform parameters into unconstrained space.
transform=True, # Set to true when possible.
# Random number generator for reproducibility.
rng=default_rng(0),
# Provide data.
X=X, y=y,
)
# Does 3000 steps, with 10 walkers, after burning for 3000, and thins by 1. At
# the end, 3000 = 3000*10 samples will be aggregated from all 10 walkers. Then,
# by default, these samples are passed into an importance sampler to reweight
# the samples, yielding 3000 samples.
chain = aies.fit(nsteps=3000, burn=3000, thin=1)
chain
is an object that contains posterior samples (states).
You can iterate over chain
.
for state in chain:
print(state) # state is a e.g., dict(alpha=1.3, beta=2.5, sigma=0.6, mu=some_long_array)
break # just print the first one.
You can convert chain
into a large dict with bundle = chain.bundle
,
which is a dict[str, ndarray]
.
You can also get the samples directly with chain.samples
.
Parallel Affine invariant ensemble sampler
Works only in python 3.13t. But 3.13t does not yet work with jupyter
.
from concurrent.futures import ThreadPoolExecutor
paies = ParallelAIES(
linear_regression, # model function.
ThreadPoolExecutor(4) # use 4 cores.
nwalkers=10, # number of walkers.
# Whether or not to transform parameters into unconstrained space.
transform=True, # Set to true when possible.
# Random number generator for reproducibility.
rng=default_rng(0),
# Provide data.
X=X, y=y,
)
# Same as non-parallel version, but will be faster in python 3.13t.
# Will be slightly slower than the non-parallel version in GIL enabled python
# builds, i.e. python 3.9, 3.10, 3.11, 3.12, 3.13.
chain = paies.fit(nsteps=3000, burn=3000, thin=1)
Laplace Approximation
la = LaplaceApproximation(
linear_regression,
transform=True,
rng=default_rng(0),
X=X, y=y,
)
# The MAP estimate and inverse Hessian are computed via L-BFGS optimization.
# Those estimates are used to construct a MvNormal object. 3000 samples are
# drawn from that resulting MvNormal.
chain = la.fit(nsamples=3000)
Posterior Predictive
rng = default_rng
xnew = np.linspace(-3, 3, 50)
Xnew = xnew.reshape(-1, 1)
ynew = Chain(
Predictive.run(
linear_regression, state=state, rng=rng, X=Xnew, y=None
)
for state in chain
).get("y")
See demos.
As of 8 Jan 2025, jupyter
does not work with the threaded (no-gil) version of
python 3.13 (3.13t). You can install arianna
with python 3.13 or python 3.13t
but you cannot install jupyter
also. If you must use jupyter
, use python
3.10, 3.11, 3.12, 3.13 (but not 3.13t).
- O4856