Skip to content
/ VeST Public

VeST: Very Sparse Tucker Factorization of Large-Scale Tensors

Notifications You must be signed in to change notification settings

leesael/VeST

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Large-Scale Tucker Tensor Factorization for Sparse and Accurate Decomposition

Overview

Given a large tensor, how can we decompose it to sparse core tensor and factor matrices without reducing the accuracy? Existing approaches either output dense results or have scalability issues. In this paper, we propose VEST, a tensor factorization method for large partially observable data to output a very sparse core tensor and factor matrices. VEST performs initial decomposition and iteratively determines unimportant entries in the decomposition results, removes the unimportant entries, and updates the remaining entries. To determine unimportant entries of factor matrices and core tensor, we define and use entry-wise ‘responsibility’ of the current decomposition. For scalable computation, the entries are updated iteratively using a carefully derived coordinate descent rule in parallel. Also, VEST automatically searches for the best sparsity ratio that results in a balanced trade-off between sparsity and accuracy. Extensive experiments show that our method VEST produces more accurate results compared to the best performing competitors for all tested real-life datasets. Moreover, VEST is scalable in terms of dimensionality, number of observable entries, and number of threads.

Paper

Please use the following citation for VeST:

Park, M., Jang, J. & Sael, L. (2020). VeST: Very Sparse Tucker Factorization of Large-Scale Tensors. 2021 IEEE International Conference on Big Data and Smart Computing (BigComp) [Paper] [Supplementary Material]

Comparison

compy_img

People

MoonJeong Park (Pohang University of Science and Technology)
Jung-Gi Jang (Seoul National University)
Lee Sael (Ajou University)

Code

The source codes used in the paper are available.

About

VeST: Very Sparse Tucker Factorization of Large-Scale Tensors

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •